Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9064
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9064
- Palabra clave:
- Aspect ratio
Carbon
MEMS
Microelectrodes
Photolithography
Diffraction effects
Electrical signal
Electrospun nanofibers
Fabrication process
Immersion Lithography
Immersion photolithography
Micro architectures
Microelectrode array
Nanofibers
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_77763524a7a48723db73297a056813cc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9064 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
title |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
spellingShingle |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography Aspect ratio Carbon MEMS Microelectrodes Photolithography Diffraction effects Electrical signal Electrospun nanofibers Fabrication process Immersion Lithography Immersion photolithography Micro architectures Microelectrode array Nanofibers |
title_short |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
title_full |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
title_fullStr |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
title_full_unstemmed |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
title_sort |
Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography |
dc.subject.keywords.none.fl_str_mv |
Aspect ratio Carbon MEMS Microelectrodes Photolithography Diffraction effects Electrical signal Electrospun nanofibers Fabrication process Immersion Lithography Immersion photolithography Micro architectures Microelectrode array Nanofibers |
topic |
Aspect ratio Carbon MEMS Microelectrodes Photolithography Diffraction effects Electrical signal Electrospun nanofibers Fabrication process Immersion Lithography Immersion photolithography Micro architectures Microelectrode array Nanofibers |
description |
Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction effects intrinsic in the photopatterning of electrospun nanofibers to give increased aspect ratio microarchitectures. Nanofiber electrode resistivity is characterized and its performance compared to that of carbon thin film. In vitro testing of electrodes are performed using E18 cortical neurons and analyzed for cell density and cell viability. © 2014 IEEE. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501 |
dc.identifier.isbn.none.fl_str_mv |
9781479935086 |
dc.identifier.issn.none.fl_str_mv |
10846999 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9064 |
dc.identifier.doi.none.fl_str_mv |
10.1109/MEMSYS.2014.6765686 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
36698143800 47461221100 55369366700 57188967902 57195449649 11338989900 8617217000 7102861016 7402126778 |
identifier_str_mv |
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501 9781479935086 10846999 10.1109/MEMSYS.2014.6765686 Universidad Tecnológica de Bolívar Repositorio UTB 36698143800 47461221100 55369366700 57188967902 57195449649 11338989900 8617217000 7102861016 7402126778 |
url |
https://hdl.handle.net/20.500.12585/9064 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferenceplace.none.fl_str_mv |
San Francisco, CA |
dc.relation.conferencedate.none.fl_str_mv |
26 January 2014 through 30 January 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898986904&doi=10.1109%2fMEMSYS.2014.6765686&partnerID=40&md5=b0aff0951c95992ee9646572180e0591 Scopus2-s2.0-84898986904 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9064/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021773703774208 |
spelling |
2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501978147993508610846999https://hdl.handle.net/20.500.12585/906410.1109/MEMSYS.2014.6765686Universidad Tecnológica de BolívarRepositorio UTB366981438004746122110055369366700571889679025719544964911338989900861721700071028610167402126778Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction effects intrinsic in the photopatterning of electrospun nanofibers to give increased aspect ratio microarchitectures. Nanofiber electrode resistivity is characterized and its performance compared to that of carbon thin film. In vitro testing of electrodes are performed using E18 cortical neurons and analyzed for cell density and cell viability. © 2014 IEEE.IEEE Robotics and Automation SocietyRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84898986904&doi=10.1109%2fMEMSYS.2014.6765686&partnerID=40&md5=b0aff0951c95992ee9646572180e0591Scopus2-s2.0-8489898690427th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithographyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAspect ratioCarbonMEMSMicroelectrodesPhotolithographyDiffraction effectsElectrical signalElectrospun nanofibersFabrication processImmersion LithographyImmersion photolithographyMicro architecturesMicroelectrode arrayNanofibersSan Francisco, CA26 January 2014 through 30 January 2014Jao, P.F.Franca E.Fang S.-P.Yoon J.Cho K.David Sr. E.Kim G.Wheeler B.Yoon, Y.K.Potter, S.M., (2001) Advances in Neural Population Coding, 130, pp. 49-62. , Chap. 4, M. A. L. N. B. T.-P. in B. Research, Ed. ElsevierStett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., Haemmerle, H., (2003) Anal. Bioanal. Chem., 377 (3), pp. 486-495Wheeler, B.C., Novak, J.L., Biomedical engineering (1986) IEEE Transactions on, 33 BME (12), pp. 1204-1212Nam, Y., Chang, J., Khatami, D., Brewer, G.J., Wheeler, B.C., (2004) IEE Proc.?Nanobiotechnology, 151 (3), pp. 109-115. , JunBlau, A., Ziegler, C., Heyer, M., Endres, F., Schwitzgebel, G., Matthies, T., Stieglitz, T., Göpel, W., (1997) Biosens. Bioelectron., 12 (9-10), pp. 883-892. , NovPine, J., (1980) J. Neurosci. Methods, 2 (1), pp. 19-31. , FebWesche, M., Hüske, M., Yakushenko, A., Brüggemann, D., Mayer, D., Offenhäusser, A., Wolfrum, B., (2012) Nanotechnology, 23 (49), p. 495303Yang, J., Martin, D.C., (2004) Sensors Actuators B Chem., 101 (1-2), pp. 133-142. , JunEgert, U., Schlosshauer, B., Fennrich, S., Nisch, W., Fejtl, M., Knott, T., Müller, T., Hämmerle, H., (1998) Brain Res. Protoc., 2 (4), pp. 229-242. , JunGawad, S., Giugliano, M., Heuschkel, M., Wessling, B., Markram, H., Schnakenberg, U., Renaud, P., Morgan, H., (2009) Front. Neuroeng., 2, p. 1Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R., (1998) Handbook of Conducting Polymers, , NY: DekkerWang, K., Fishman, H.A., Dai, H., Harris, J.S., (2006) Nano Lett., 6 (9), pp. 2043-2048. , AugLovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Spalluto, G., Prato, M., Ballerini, L., (2005) Nano Lett., 5 (6), p. 1107Koehne, J.E., Marsh, M., Boakye, A., Douglas, B., Kim, I.Y., Chang, S.-Y., Jang, D.-P., Lee, K.H., (2011) Analyst, 136 (9), p. 1802Arumugam, P.U., Chen, H., Siddiqui, S., Weinrich, J.A.P., Jejelowo, A., Li, J., Meyyappan, M., (2009) Bios. Bioe., 24 (9), pp. 2818-2824. , MayDe Asis Jr., E., N-Vu, T.D.B., Arumugam, P., Chen, H., Cassell, A., Andrews, R., Yang, C., Li, J., (2009) Biom. Micr., 11 (4), p. 801Fee Jao, P., Tae Kim, K., Kim, G.J., Yoon, Y., (2013) Journal of Micromechanics and Microengineering, (23), p. 114011. , Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9064/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9064oai:repositorio.utb.edu.co:20.500.12585/90642023-05-26 13:50:33.558Repositorio Institucional UTBrepositorioutb@utb.edu.co |