Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography

Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9064
Acceso en línea:
https://hdl.handle.net/20.500.12585/9064
Palabra clave:
Aspect ratio
Carbon
MEMS
Microelectrodes
Photolithography
Diffraction effects
Electrical signal
Electrospun nanofibers
Fabrication process
Immersion Lithography
Immersion photolithography
Micro architectures
Microelectrode array
Nanofibers
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_77763524a7a48723db73297a056813cc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9064
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
title Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
spellingShingle Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
Aspect ratio
Carbon
MEMS
Microelectrodes
Photolithography
Diffraction effects
Electrical signal
Electrospun nanofibers
Fabrication process
Immersion Lithography
Immersion photolithography
Micro architectures
Microelectrode array
Nanofibers
title_short Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
title_full Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
title_fullStr Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
title_full_unstemmed Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
title_sort Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithography
dc.subject.keywords.none.fl_str_mv Aspect ratio
Carbon
MEMS
Microelectrodes
Photolithography
Diffraction effects
Electrical signal
Electrospun nanofibers
Fabrication process
Immersion Lithography
Immersion photolithography
Micro architectures
Microelectrode array
Nanofibers
topic Aspect ratio
Carbon
MEMS
Microelectrodes
Photolithography
Diffraction effects
Electrical signal
Electrospun nanofibers
Fabrication process
Immersion Lithography
Immersion photolithography
Micro architectures
Microelectrode array
Nanofibers
description Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction effects intrinsic in the photopatterning of electrospun nanofibers to give increased aspect ratio microarchitectures. Nanofiber electrode resistivity is characterized and its performance compared to that of carbon thin film. In vitro testing of electrodes are performed using E18 cortical neurons and analyzed for cell density and cell viability. © 2014 IEEE.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:52Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:52Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501
dc.identifier.isbn.none.fl_str_mv 9781479935086
dc.identifier.issn.none.fl_str_mv 10846999
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9064
dc.identifier.doi.none.fl_str_mv 10.1109/MEMSYS.2014.6765686
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 36698143800
47461221100
55369366700
57188967902
57195449649
11338989900
8617217000
7102861016
7402126778
identifier_str_mv Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501
9781479935086
10846999
10.1109/MEMSYS.2014.6765686
Universidad Tecnológica de Bolívar
Repositorio UTB
36698143800
47461221100
55369366700
57188967902
57195449649
11338989900
8617217000
7102861016
7402126778
url https://hdl.handle.net/20.500.12585/9064
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferenceplace.none.fl_str_mv San Francisco, CA
dc.relation.conferencedate.none.fl_str_mv 26 January 2014 through 30 January 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898986904&doi=10.1109%2fMEMSYS.2014.6765686&partnerID=40&md5=b0aff0951c95992ee9646572180e0591
Scopus2-s2.0-84898986904
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9064/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397613434667008
spelling 2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); pp. 498-501978147993508610846999https://hdl.handle.net/20.500.12585/906410.1109/MEMSYS.2014.6765686Universidad Tecnológica de BolívarRepositorio UTB366981438004746122110055369366700571889679025719544964911338989900861721700071028610167402126778Microelectrode arrays (MEAs) are widely used for stimulating and receiving electrical signals between human and machines and for in vitro neural study. This work demonstrates the fabrication process of nanofibrous 3D microelectrodes using immersion lithography. Oil immersion negates the diffraction effects intrinsic in the photopatterning of electrospun nanofibers to give increased aspect ratio microarchitectures. Nanofiber electrode resistivity is characterized and its performance compared to that of carbon thin film. In vitro testing of electrodes are performed using E18 cortical neurons and analyzed for cell density and cell viability. © 2014 IEEE.IEEE Robotics and Automation SocietyRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84898986904&doi=10.1109%2fMEMSYS.2014.6765686&partnerID=40&md5=b0aff0951c95992ee9646572180e0591Scopus2-s2.0-8489898690427th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014Fabrication of carbon nanofibrous microelectrode array (CNF-MEA) using nanofiber immersion photolithographyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAspect ratioCarbonMEMSMicroelectrodesPhotolithographyDiffraction effectsElectrical signalElectrospun nanofibersFabrication processImmersion LithographyImmersion photolithographyMicro architecturesMicroelectrode arrayNanofibersSan Francisco, CA26 January 2014 through 30 January 2014Jao, P.F.Franca E.Fang S.-P.Yoon J.Cho K.David Sr. E.Kim G.Wheeler B.Yoon, Y.K.Potter, S.M., (2001) Advances in Neural Population Coding, 130, pp. 49-62. , Chap. 4, M. A. L. N. B. T.-P. in B. Research, Ed. ElsevierStett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., Haemmerle, H., (2003) Anal. Bioanal. Chem., 377 (3), pp. 486-495Wheeler, B.C., Novak, J.L., Biomedical engineering (1986) IEEE Transactions on, 33 BME (12), pp. 1204-1212Nam, Y., Chang, J., Khatami, D., Brewer, G.J., Wheeler, B.C., (2004) IEE Proc.?Nanobiotechnology, 151 (3), pp. 109-115. , JunBlau, A., Ziegler, C., Heyer, M., Endres, F., Schwitzgebel, G., Matthies, T., Stieglitz, T., Göpel, W., (1997) Biosens. Bioelectron., 12 (9-10), pp. 883-892. , NovPine, J., (1980) J. Neurosci. Methods, 2 (1), pp. 19-31. , FebWesche, M., Hüske, M., Yakushenko, A., Brüggemann, D., Mayer, D., Offenhäusser, A., Wolfrum, B., (2012) Nanotechnology, 23 (49), p. 495303Yang, J., Martin, D.C., (2004) Sensors Actuators B Chem., 101 (1-2), pp. 133-142. , JunEgert, U., Schlosshauer, B., Fennrich, S., Nisch, W., Fejtl, M., Knott, T., Müller, T., Hämmerle, H., (1998) Brain Res. Protoc., 2 (4), pp. 229-242. , JunGawad, S., Giugliano, M., Heuschkel, M., Wessling, B., Markram, H., Schnakenberg, U., Renaud, P., Morgan, H., (2009) Front. Neuroeng., 2, p. 1Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R., (1998) Handbook of Conducting Polymers, , NY: DekkerWang, K., Fishman, H.A., Dai, H., Harris, J.S., (2006) Nano Lett., 6 (9), pp. 2043-2048. , AugLovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Spalluto, G., Prato, M., Ballerini, L., (2005) Nano Lett., 5 (6), p. 1107Koehne, J.E., Marsh, M., Boakye, A., Douglas, B., Kim, I.Y., Chang, S.-Y., Jang, D.-P., Lee, K.H., (2011) Analyst, 136 (9), p. 1802Arumugam, P.U., Chen, H., Siddiqui, S., Weinrich, J.A.P., Jejelowo, A., Li, J., Meyyappan, M., (2009) Bios. Bioe., 24 (9), pp. 2818-2824. , MayDe Asis Jr., E., N-Vu, T.D.B., Arumugam, P., Chen, H., Cassell, A., Andrews, R., Yang, C., Li, J., (2009) Biom. Micr., 11 (4), p. 801Fee Jao, P., Tae Kim, K., Kim, G.J., Yoon, Y., (2013) Journal of Micromechanics and Microengineering, (23), p. 114011. , Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9064/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9064oai:repositorio.utb.edu.co:20.500.12585/90642023-05-26 13:50:33.558Repositorio Institucional UTBrepositorioutb@utb.edu.co