Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy
In this work, we found that tomato and guava plants infected with Meloidogyne enterolobii showed different Fourier-transformed infrared spectral patterns compared to non-infected plants. Additionally, by using two-dimensional correlation spectroscopy (2D-COS) we were able to track and explain those...
- Autores:
-
Guerra, Mayamarú
Paba, Gabriel
Cubillán, Néstor
Portillo, Edgar
Casassa-Padrón, Ana M.
Aballay, Erwin
San-Blas, Ernesto
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10029
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10029
https://brill.com/view/journals/nemy/aop/article-10.1163-15685411-bja10060/article-10.1163-15685411-bja10060.xml
- Palabra clave:
- Fourier transformed infrared spectroscopy
Guava root-knot nematode
Parasitism
Plant pathology
Plant tissues
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_7720aec0ae94a688bb727aa44aec4f4b |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10029 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
title |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
spellingShingle |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy Fourier transformed infrared spectroscopy Guava root-knot nematode Parasitism Plant pathology Plant tissues LEMB |
title_short |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
title_full |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
title_fullStr |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
title_full_unstemmed |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
title_sort |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy |
dc.creator.fl_str_mv |
Guerra, Mayamarú Paba, Gabriel Cubillán, Néstor Portillo, Edgar Casassa-Padrón, Ana M. Aballay, Erwin San-Blas, Ernesto |
dc.contributor.author.none.fl_str_mv |
Guerra, Mayamarú Paba, Gabriel Cubillán, Néstor Portillo, Edgar Casassa-Padrón, Ana M. Aballay, Erwin San-Blas, Ernesto |
dc.subject.keywords.spa.fl_str_mv |
Fourier transformed infrared spectroscopy Guava root-knot nematode Parasitism Plant pathology Plant tissues |
topic |
Fourier transformed infrared spectroscopy Guava root-knot nematode Parasitism Plant pathology Plant tissues LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
In this work, we found that tomato and guava plants infected with Meloidogyne enterolobii showed different Fourier-transformed infrared spectral patterns compared to non-infected plants. Additionally, by using two-dimensional correlation spectroscopy (2D-COS) we were able to track and explain those spectral differences according to the progression of the nematode infection in the plants. In general, 2D-COS reveals the same chain of changes in both tomatoes and guavas when under nematode infection. There is a decrease in bands representing amino acids and proteins, fatty acids and lipids are down-regulated, and sugars and total phenols increase in leaves of infected plants. The application of this technique provides useful information on the metabolic and biochemical changes in plant tissues when diseased in a rapid manner. This technique could be used in the future, combined with other methods, to improve field diagnosis, quality control, or to reduce analytical time for biochemical purposes. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-10-29 |
dc.date.accessioned.none.fl_str_mv |
2021-02-16T15:22:24Z |
dc.date.available.none.fl_str_mv |
2021-02-16T15:22:24Z |
dc.date.submitted.none.fl_str_mv |
2021-02-15 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Guerra, M., Paba, G., Cubillán, N., Portillo, E., Casassa-Padrón, A., Aballay, E., & San-Blas, E. (2020). Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy, Nematology, , 1-15. doi: https://doi.org/10.1163/15685411-bja10060 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10029 |
dc.identifier.url.none.fl_str_mv |
https://brill.com/view/journals/nemy/aop/article-10.1163-15685411-bja10060/article-10.1163-15685411-bja10060.xml |
dc.identifier.doi.none.fl_str_mv |
10.1163/15685411-bja10060 |
dc.identifier.eissn.none.fl_str_mv |
1568-5411 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Guerra, M., Paba, G., Cubillán, N., Portillo, E., Casassa-Padrón, A., Aballay, E., & San-Blas, E. (2020). Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy, Nematology, , 1-15. doi: https://doi.org/10.1163/15685411-bja10060 10.1163/15685411-bja10060 1568-5411 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10029 https://brill.com/view/journals/nemy/aop/article-10.1163-15685411-bja10060/article-10.1163-15685411-bja10060.xml |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy. 2020 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/1/176.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/3/176.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/4/176.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 8d41c79cab353f5d7c60c2a851c38526 112f2c889ccc08d7cf14b2a65d5b0968 d7c466b420875ce35b4915deec4b9b52 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021773566410752 |
spelling |
Guerra, Mayamarú5af72308-bd11-495a-86d4-0817f8961b6cPaba, Gabriel9fe9e218-18f8-4446-a08c-366c9ade2fbeCubillán, Néstor81ec06c5-9433-4b0c-9e60-ef40644183c8Portillo, Edgar3a29420e-087c-46ad-a4c6-e7c3aa3f7953Casassa-Padrón, Ana M.8697cdf1-10c4-420e-a7ed-f54bceb248c0Aballay, Erwinc9104fe0-7590-47b7-b14e-e971b4f8178fSan-Blas, Ernesto5d6dc354-48b4-4ff2-a0ad-897da18495ce2021-02-16T15:22:24Z2021-02-16T15:22:24Z2020-10-292021-02-15Guerra, M., Paba, G., Cubillán, N., Portillo, E., Casassa-Padrón, A., Aballay, E., & San-Blas, E. (2020). Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy, Nematology, , 1-15. doi: https://doi.org/10.1163/15685411-bja10060https://hdl.handle.net/20.500.12585/10029https://brill.com/view/journals/nemy/aop/article-10.1163-15685411-bja10060/article-10.1163-15685411-bja10060.xml10.1163/15685411-bja100601568-5411Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this work, we found that tomato and guava plants infected with Meloidogyne enterolobii showed different Fourier-transformed infrared spectral patterns compared to non-infected plants. Additionally, by using two-dimensional correlation spectroscopy (2D-COS) we were able to track and explain those spectral differences according to the progression of the nematode infection in the plants. In general, 2D-COS reveals the same chain of changes in both tomatoes and guavas when under nematode infection. There is a decrease in bands representing amino acids and proteins, fatty acids and lipids are down-regulated, and sugars and total phenols increase in leaves of infected plants. The application of this technique provides useful information on the metabolic and biochemical changes in plant tissues when diseased in a rapid manner. This technique could be used in the future, combined with other methods, to improve field diagnosis, quality control, or to reduce analytical time for biochemical purposes.15 páginasapplication/pdfengSequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopy. 2020Sequential spectral changes of Meloidogyne enterolobii-infected plants using two dimensional correlation IR spectroscopyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Fourier transformed infrared spectroscopyGuava root-knot nematodeParasitismPlant pathologyPlant tissuesLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresAhmed, N., Abbasi, M.W., Shaukat, S.S., Zaki, M.J. Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica (2009) Phytopathologia Mediterranea, 48 (2), pp. 262-268. Cited 20 times.Almeida, A.M., Gomes, V.M., Souza, R.M. Greenhouse and field assessment of rhizobacteria to control guava decline (Open Access) (2011) Bragantia, 70 (4), pp. 837-842. Cited 7 times. http://www.scielo.br/pdf/brag/v70n4/16.pdf doi: 10.1590/S0006-87052011000400016Baker, M.J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.J., Dorling, K.M., Fielden, P.R., (...), Martin, F.L. Using Fourier transform IR spectroscopy to analyze biological materials (Open Access) (2014) Nature Protocols, 9 (8), pp. 1771-1791. Cited 750 times. http://www.natureprotocols.com/ doi: 10.1038/nprot.2014.110Barth, A. Infrared spectroscopy of proteins (2007) Biochimica et Biophysica Acta - Bioenergetics, 1767 (9), pp. 1073-1101. Cited 2322 times. doi: 10.1016/j.bbabio.2007.06.004Brito, J.A., Stanley, J.D., Kaur, R., Cetintas, R., Di Vito, M., Thies, J.A., Dickson, D.W. Effects of the Mi-1, N and tabasco genes on infection and reproduction of meloidogyne mayaguensis on tomato and pepper genotypes (2007) Journal of Nematology, 39 (4), pp. 327-332. Cited 43 times.Butler, H.J., McAinsh, M.R., Adams, S., Martin, F.L. Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development (Open Access) (2015) Analytical Methods, 7 (10), pp. 4059-4070. Cited 35 times. http://www.rsc.org/Publishing/Journals/AY/About.asp doi: 10.1039/c5ay00377fCarneiro, R.M.D.G., De Freitas, V.M., Mattos, J.K., Castro, J.M.C., Gomes, C.B., Carneiro, R.G. Major guava nematodes and control prospects using resistance on Psidium spp. and non-host crops (2012) Acta Horticulturae, 959, pp. 41-50. Cited 7 times. http://www.actahort.org/members/showpdf?session=7601 ISBN: 978-906605565-0 doi: 10.17660/actahortic.2012.959.4Castagnone-Sereno, P. Meloidogyne enterolobii (= M. mayaguensis): Profile of an emerging, highly pathogenic, root-knot nematode species (2012) Nematology, 14 (2), pp. 133-138. Cited 44 times. doi: 10.1163/156854111X601650de Farias Viégas Aquije, G.M., Zorzal, P.B., Buss, D.S., Ventura, J.A., Fernandes, P.M.B., Fernandes, A.A.R. Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars (2010) Plant Cell Reports, 29 (10), pp. 1109-1117. Cited 15 times. doi: 10.1007/s00299-010-0894-9Dhakshinamoorthy, S., Mariama, K., Elsen, A., De Waele, D. Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection (2014) Nematology, 16 (5), pp. 565-576. Cited 13 times. http://www.brill.com/nematology doi: 10.1163/15685411-00002788Infrared imaging of sunflower and maize root anatomy (2007) Journal of Agricultural and Food Chemistry, 55 (26), pp. 10517-10530. Cited 49 times. doi: 10.1021/jf072052eDučić, T., Thieme, J., Polle, A. Phosphorus compartmentalization on the cellular level of douglas fir root as affected by Mn toxicity: A synchrotron-based FTIR approach (Open Access) (2012) Spectroscopy (New York), 27 (5-6), pp. 265-272. Cited 9 times. doi: 10.1155/2012/374039Eloh, K., Sasanelli, N., Maxia, A., Caboni, P. Untargeted Metabolomics of Tomato Plants after Root-Knot Nematode Infestation (2016) Journal of Agricultural and Food Chemistry, 64 (29), pp. 5963-5968. Cited 25 times. http://pubs.acs.org/journal/jafcau doi: 10.1021/acs.jafc.6b02181Gandolfo, D.S., Mortimer, H., Woodhall, J.W., Boonham, N. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states (Open Access) (2016) Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 163, pp. 181-188. Cited 11 times. doi: 10.1016/j.saa.2016.03.022Ghaderi, R., Karssen, G. An updated checklist of meloidogyne Göldi, 1887 species, with a diagnostic compendium for second-stage juveniles and males (2020) Journal of Crop Protection, 9 (2), pp. 183-193. https://jcp.modares.ac.ir/article-3-35347-en.pdfGunasekaran, D., Bunawan, H., Ismail, I., Noor, N.M. Data on Fourier transform-infrared of Cosmos caudatus Kunth. tissues analyzed with chemometric analysis (Open Access) (2018) Data in Brief, 19, pp. 1423-1427. doi: 10.1016/j.dib.2018.06.025Heraud, P., Caine, S., Sanson, G., Gleadow, R., Wood, B.R., McNaughton, D. Focal plane array infrared imaging: A new way to analyse leaf tissue (2007) New Phytologist, 173 (1), pp. 216-225. Cited 67 times. doi: 10.1111/j.1469-8137.2006.01881.Heredia-Guerrero, J.A., Benítez, J.J., Domínguez, E., Bayer, I.S., Cingolani, R., Athanassiou, A., Heredia, A. Infrared and Raman spectroscopic features of plant cuticles: A review (Open Access) (2014) Frontiers in Plant Science, 5 (JUN), art. no. 305. Cited 145 times. http://journal.frontiersin.org/article/10.3389/fpls.2014.00305/full doi: 10.3389/fpls.2014.00305Hillnhütter, C., Mahlein, A.-K., Sikora, R.A., Oerke, E.-C. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields (2011) Field Crops Research, 122 (1), pp. 70-77. Cited 65 times. doi: 10.1016/j.fcr.2011.02.007Hussey, R., Barker, K. Comparison of methods for collecting inocula of Meloidogyne spp., including a new technique (1973) Plant Disease Reporter, 57, pp. 1025-1028. Cited 1814 times.Joalland, S., Screpanti, C., Varella, H.V., Reuther, M., Schwind, M., Lang, C., Walter, A., (...), Liebisch, F. Aerial and ground based sensing of tolerance to beet cyst nematode in sugar beet (Open Access) (2018) Remote Sensing, 10 (5), art. no. 787. Cited 14 times. http://www.mdpi.com/2072-4292/10/5/787/pdf doi: 10.3390/rs10050787Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., (...), Perry, R.N. Top 10 plant-parasitic nematodes in molecular plant pathology (Open Access) (2013) Molecular Plant Pathology, 14 (9), pp. 946-961. Cited 618 times. doi: 10.1111/mpp.12057Jung, Y.M., Shin, H.S., Kim, S.B., Noda, I. New approach to generalized two-dimensional correlation spectroscopy. 1: Combination of principal component analysis and two-dimensional correlation spectroscopy (Open Access) (2002) Applied Spectroscopy, 56 (12), pp. 1562-1567. Cited 54 times. doi: 10.1366/000370202321116020Khairudin, K., Sukiran, N.A., Goh, H.-H., Baharum, S.N., Noor, N.M. Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy (2014) Metabolomics, 10 (2), art. no. 0, pp. 203-211. Cited 17 times. http://www.kluweronline.com/issn/1573-3890/ doi: 10.1007/s11306-013-0570-5Kihika, R., Murungi, L.K., Coyne, D., Ng'ang'a, M., Hassanali, A., Teal, P.E.A., Torto, B. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory (Open Access) (2017) Scientific Reports, 7 (1), art. no. 2903. Cited 33 times. www.nature.com/srep/index.html doi: 10.1038/s41598-017-02379-8Kumar, S., Lahlali, R., Liu, X., Karunakaran, C. Infrared spectroscopy combined with imaging: A new developing analytical tool in health and plant science (2016) Applied Spectroscopy Reviews, 51 (6), pp. 466-483. Cited 24 times. www.tandf.co.uk/journals/titles/05704928.asp doi: 10.1080/05704928.2016.1157808Largo-Gosens, A., Hernández-Altamirano, M., García-Calvo, L., Alonso-Simón, A., Álvarez, J., Acebes, J.L. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls (Open Access) (2014) Frontiers in Plant Science, 5 (JUN), art. no. 303. Cited 45 times. http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00312/pdf doi: 10.3389/fpls.2014.00303Leung Tang, P., Alqassim, M., Nic Daéid, N., Berlouis, L., Seelenbinder, J. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs (Open Access) (2016) Applied Spectroscopy, 70 (5), pp. 923-931. Cited 5 times. https://journals.sagepub.com/loi/asp doi: 10.1177/0003702816638306Lobna, H., Aymen, E.M., Hajer, R., Naima, M.-B., Najet, H.-R. Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f.Sp.radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica (2017) European Journal of Plant Pathology, 148 (2), pp. 463-472. Cited 4 times. www.wkap.nl/journalhome.htm/0929-1873 doi: 10.1007/s10658-016-1104-6Mandal, S.M., Chakraborty, D., Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses (Open Access) (2010) Plant Signaling and Behavior, 5 (4), pp. 359-368. Cited 286 times. http://www.landesbioscience.com/journals/psb/MandalPSB5-4.pdf doi: 10.4161/psb.5.4.10871Moens, M., Perry, R.N., Starr, J.L. Meloidogyne species - a diverse group of novel and important plant parasites (2009) Root-knot Nematodes, pp. 1-17. Cited 221 times. http://bookshop.cabi.org/ ISBN: 978-184593492-7Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S., Tahna Maafi, Z. Current nematode threats to world agriculture (2011) Genomics and Molecular Genetics of Plant-Nematode Interactions, pp. 21-43. Cited 330 times. Jones, J., Gheysen, G. & Fenoll, C. Eds. Dordrecht, The Netherlands, SpringerNoda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy (1993) Applied Spectroscopy, 47 (9), pp. 1329-1336. Cited 1509 times. doi: 10.1366/0003702934067694Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins (2017) Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 187, pp. 119-129. Cited 22 times. doi: 10.1016/j.saa.2017.06.034Olale, K., Walyambillah, W., Mohammed, S.A., Sila, A., Shepherd, K. Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two Floridian mango (Mangifera indica L.) cultivars in Kenya (Open Access) (2017) Journal of Analytical Science and Technology, 8 (1), art. no. 21. jast-journal.springeropen.com/ doi: 10.1186/s40543-017-0130-0Park, Y., Noda, I., Jung, Y.M. Novel developments and applications of two-dimensional correlation spectroscopy (2016) Journal of Molecular Structure, 1124, pp. 11-28. Cited 49 times. www.elsevier.com/inca/publications/store/5/0/0/8/5/0/index.htt doi: 10.1016/j.molstruc.2016.01.028Park, Y., Jin, S., Noda, I., Jung, Y.M. Emerging developments in two-dimensional correlation spectroscopy (2D-COS) (2020) Journal of Molecular Structure, 1217, art. no. 128405. Cited 4 times. https://www.journals.elsevier.com/journal-of-molecular-structure doi: 10.1016/j.molstruc.2020.128405(2016) R: A Language and Environment for Statistical Computing. Cited 99179 times. Vienna, Austria, R Foundation for Statistical Computing. ISBN http://www.R-project.org/Rammah, A., Hirschmann, H. Meloidogyne mayaguensis n. Sp. (Meloidogynidae), a root-knot nematode from Puerto Rico (1988) Journal of Nematology, 20, pp. 58-69. Cited 68 times.Raskin, I. Role of salicylic acid in plants (1992) Annual Review of Plant Physiology and Plant Molecular Biology, 43 (1), pp. 439-463. Cited 845 times. doi: 10.1146/annurev.pp.43.060192.002255Roy, I.G. On the Hilbert-Noda transformation of geophysical time- series (2018) Geophysical Journal International, 215 (3), pp. 2198-2205. Cited 3 times. http://gji.oxfordjournals.org/ doi: 10.1093/gji/ggy402San-Blas, E., Guerra, M., Portillo, E., Esteves, I., Cubillán, N., Alvarado, Y. ATR/FTIR characterization of Steinernema glaseri and Heterorhabditis indica (2011) Vibrational Spectroscopy, 57 (2), pp. 220-228. Cited 14 times. doi: 10.1016/j.vibspec.2011.07.008San-Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa-Padrón, A.M., González-González, C., Guerra, M. The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations (2020) Plant Pathology, 69 (8), pp. 1589-1600. Cited 2 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-3059 doi: 10.1111/ppa.13246Sharma, I.P., Sharma, A.K. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode (2017) Symbiosis, 71 (3), pp. 175-183. Cited 25 times. http://www.springer.com/life+sci/microbiology/journal/13199 doi: 10.1007/s13199-016-0423-xSingh, S., Singh, B., Singh, A.P. Nematodes: A threat to sustainability of agriculture (2015) Procedia Environmental Sciences, 29, pp. 215-216. Cited 37 times.Thumanu, K., Sompong, M., Phansak, P., Nontapot, K., Buensanteai, N. Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007 (Open Access) (2015) Journal of Plant Interactions, 10 (1), pp. 270-279. Cited 12 times. http://www.tandf.co.uk/journals/titles/17429145.asp doi: 10.1080/17429145.2015.1059957Tigano, M., De Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., Dos Santos, M., Teixeira, C., (...), Carneiro, R. Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species (Open Access) (2010) Plant Pathology, 59 (6), pp. 1054-1061. Cited 72 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-3059 doi: 10.1111/j.1365-3059.2010.02350.xTronchet, M., BalaguÉ, C., Kroj, T., Jouanin, L., Roby, D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis (Open Access) (2010) Molecular Plant Pathology, 11 (1), pp. 83-92. Cited 129 times. doi: 10.1111/j.1364-3703.2009.00578.xTürker-Kaya, S., Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis (Open Access) (2017) Molecules, 22 (1), art. no. 168. Cited 97 times. http://www.mdpi.com/1420-3049/22/1/168/pdf doi: 10.3390/molecules22010168Veronico, P., Paciolla, C., Pomar, F., De Leonardis, S., García-Ulloa, A., Melillo, M.T. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato (2018) Journal of Plant Physiology, 230, pp. 40-50. Cited 7 times. www.urbanfischer.de/journals/jpp/p_physio.htm doi: 10.1016/j.jplph.2018.07.013Villar-Luna, E., Goméz-Rodriguez, O., Rojas-Martínez, R.I., Zavaleta-Mejía, E. Presence of meloidogyne enterolobii on jalapeño pepper (Capsicum annuum L.) in Sinaloa, Mexico (Open Access) (2016) Helminthologia (Poland), 53 (2), pp. 155-160. Cited 8 times. http://springerlink.com/content/1336-9083/ doi: 10.1515/helmin-2016-0001Wang, E.L., Bergeson, G.B. Biochemical changes in root exudate and xylem sap of tomato plants infected with Meloidogyne incognita (1974) Journal of Nematology, 6, pp. 194-202. Cited 24 times.Yang, B., Eisenback, J.D. Meloidogyne enterolobii n. Sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China (1983) Journal of Nematology, 15, pp. 381-391. Cited 97 times.Žibrat, U., Susič, N., Knapič, M., Širca, S., Strajnar, P., Razinger, J., Vončina, A., (...), Gerič Stare, B. Pipeline for imaging, extraction, pre-processing, and processing of time-series hyperspectral data for discriminating drought stress origin in tomatoes (Open Access) (2019) MethodsX, 6, pp. 399-408. Cited 5 times. http://www.journals.elsevier.com/methodsx/ doi: 10.1016/j.mex.2019.02.022Zinov'eva, S.V., Vasyukova, N.I., Ozeretskovskaya, O.L. Biochemical aspects of plant interactions with phytoparasitic nematodes: A review (2004) Applied Biochemistry and Microbiology, 40 (2), pp. 111-119. Cited 14 times. doi: 10.1023/B:ABIM.0000018912.93529.78http://purl.org/coar/resource_type/c_2df8fbb1LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52ORIGINAL176.pdf176.pdfAbstractapplication/pdf83672https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/1/176.pdf8d41c79cab353f5d7c60c2a851c38526MD51TEXT176.pdf.txt176.pdf.txtExtracted texttext/plain1158https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/3/176.pdf.txt112f2c889ccc08d7cf14b2a65d5b0968MD53THUMBNAIL176.pdf.jpg176.pdf.jpgGenerated Thumbnailimage/jpeg53988https://repositorio.utb.edu.co/bitstream/20.500.12585/10029/4/176.pdf.jpgd7c466b420875ce35b4915deec4b9b52MD5420.500.12585/10029oai:repositorio.utb.edu.co:20.500.12585/100292021-02-16 16:05:19.834Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |