Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists
The objective of this study is to analysis of accident of motorcyclists on Bogotá roads in Colombia. For detection of conditions related to crashes and their severity, the proposed model develops the strategies to enhance road safety. In this context, data mining and machine learning techniques are...
- Autores:
-
Ospina-Mateus, Holman
Quintana Jiménez, Leonardo Augusto
Lopez-Valdes, Francisco J.
Berrio Garcia, Shyrle
Barrero, Lope H.
Sankar Sana, Shib
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12240
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12240
- Palabra clave:
- Crash Injuries;
Crash;
Random Parameters
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_760e10770fce7d2f661709ec32bab4ca |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12240 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
title |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
spellingShingle |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists Crash Injuries; Crash; Random Parameters LEMB |
title_short |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
title_full |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
title_fullStr |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
title_full_unstemmed |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
title_sort |
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists |
dc.creator.fl_str_mv |
Ospina-Mateus, Holman Quintana Jiménez, Leonardo Augusto Lopez-Valdes, Francisco J. Berrio Garcia, Shyrle Barrero, Lope H. Sankar Sana, Shib |
dc.contributor.author.none.fl_str_mv |
Ospina-Mateus, Holman Quintana Jiménez, Leonardo Augusto Lopez-Valdes, Francisco J. Berrio Garcia, Shyrle Barrero, Lope H. Sankar Sana, Shib |
dc.subject.keywords.spa.fl_str_mv |
Crash Injuries; Crash; Random Parameters |
topic |
Crash Injuries; Crash; Random Parameters LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The objective of this study is to analysis of accident of motorcyclists on Bogotá roads in Colombia. For detection of conditions related to crashes and their severity, the proposed model develops the strategies to enhance road safety. In this context, data mining and machine learning techniques are used to investigate 34,232 accidents by motorcyclists during January 2013 to February 2018. Both the Genetic algorithm and simulated annealing are applied in conjunction with mining rules (support, confidence, lift, and comprehensibility) as per objectives of the problem. The application of a hybrid algorithm allows for the creation and definition of optimal hierarchical decision rules for the prediction of the severity of motorcycle traffic accidents. The proposed method yields good results in the metrics of recall (90.07%), precision (89.87%), and accuracy (90.06%) on the data set. The results increase the prediction by 20–21% in comparisons with the following methods: Decision Trees (CART, ID3, and C4.5), Support Vector Machines (SVMs), K-Nearest Neighbor (KNN), Naive Bayes, Neural Networks, Random Forest, and Random Tree. The proposed method defines 11 rules for the prediction of accidents with material damage, 24 rules with injuries, and 12 rules with fatalities. The variables with the most recurrence in the definition of rules are time, weather and road conditions, and the number of victims involved in the accidents. Finally, the interactions of the conditions and characteristics presented in motorcycle accidents are analyzed which contribute to the definition of countermeasures for road safety. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-19T21:25:57Z |
dc.date.available.none.fl_str_mv |
2023-07-19T21:25:57Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Ospina-Mateus, H., Quintana Jiménez, L. A., Lopez-Valdes, F. J., Berrio Garcia, S., Barrero, L. H., & Sana, S. S. (2021). Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists. Journal of ambient intelligence and humanized computing, 12(11), 10051-10072. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12240 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12652-020-02759-5 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Ospina-Mateus, H., Quintana Jiménez, L. A., Lopez-Valdes, F. J., Berrio Garcia, S., Barrero, L. H., & Sana, S. S. (2021). Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists. Journal of ambient intelligence and humanized computing, 12(11), 10051-10072. 10.1007/s12652-020-02759-5 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12240 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Ambient Intelligence and Humanized Computing |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/1/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/4/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/5/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 10a5ee66c0e546c073a2110f89f9f7aa 4460e5956bc1d1639be9ae6146a50347 8610ea1d33013c6f723ff84ebc3eae53 68e9b9dbdbce6f4a9656b605c4d828fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021629819224064 |
spelling |
Ospina-Mateus, Holman175019f3-96bf-4b48-b2a3-88f94192664bQuintana Jiménez, Leonardo Augustofadbc121-f32c-427a-ae59-4f4a37ed4471Lopez-Valdes, Francisco J.5a4268e2-55b2-412f-814e-1a12bd7d3511Berrio Garcia, Shyrlec1949507-5a55-4c89-bb1c-c88d040346eaBarrero, Lope H.7200fd84-3fac-4d77-9788-f5bca6d52db4Sankar Sana, Shibd10ac6cd-87f8-493f-80ec-cf649edaf60c2023-07-19T21:25:57Z2023-07-19T21:25:57Z20212023Ospina-Mateus, H., Quintana Jiménez, L. A., Lopez-Valdes, F. J., Berrio Garcia, S., Barrero, L. H., & Sana, S. S. (2021). Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists. Journal of ambient intelligence and humanized computing, 12(11), 10051-10072.https://hdl.handle.net/20.500.12585/1224010.1007/s12652-020-02759-5Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe objective of this study is to analysis of accident of motorcyclists on Bogotá roads in Colombia. For detection of conditions related to crashes and their severity, the proposed model develops the strategies to enhance road safety. In this context, data mining and machine learning techniques are used to investigate 34,232 accidents by motorcyclists during January 2013 to February 2018. Both the Genetic algorithm and simulated annealing are applied in conjunction with mining rules (support, confidence, lift, and comprehensibility) as per objectives of the problem. The application of a hybrid algorithm allows for the creation and definition of optimal hierarchical decision rules for the prediction of the severity of motorcycle traffic accidents. The proposed method yields good results in the metrics of recall (90.07%), precision (89.87%), and accuracy (90.06%) on the data set. The results increase the prediction by 20–21% in comparisons with the following methods: Decision Trees (CART, ID3, and C4.5), Support Vector Machines (SVMs), K-Nearest Neighbor (KNN), Naive Bayes, Neural Networks, Random Forest, and Random Tree. The proposed method defines 11 rules for the prediction of accidents with material damage, 24 rules with injuries, and 12 rules with fatalities. The variables with the most recurrence in the definition of rules are time, weather and road conditions, and the number of victims involved in the accidents. Finally, the interactions of the conditions and characteristics presented in motorcycle accidents are analyzed which contribute to the definition of countermeasures for road safety. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Ambient Intelligence and Humanized ComputingExtraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclistsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Crash Injuries;Crash;Random ParametersLEMBCartagena de IndiasAbdelwahab, H.T., Abdel-Aty, M.A. Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections (2001) Transportation Research Record, (1746), pp. 6-13. Cited 213 times. http://journals.sagepub.com/toc/TRR/current doi: 10.3141/1746-02Abdul Manan, M.M., Várhelyi, A. Motorcyclists' road safety related behavior at access points on primary roads in Malaysia - A case study (2015) Safety Science, 77, pp. 80-94. Cited 27 times. www.elsevier.com/locate/ssci doi: 10.1016/j.ssci.2015.03.012Abedi, L., Sadeghi-Bazargani, H. Epidemiological patterns and risk factors of motorcycle injuries in Iran and Eastern Mediterranean Region countries: a systematic review (2017) International Journal of Injury Control and Safety Promotion, 24 (2), pp. 263-270. Cited 20 times. http://www.tandf.co.uk/journals/titles/17457300.asp doi: 10.1080/17457300.2015.1080729Agrawal, R., Imieliński, T., Swami, A. Mining Association Rules Between Sets of Items in Large Databases (1993) ACM SIGMOD Record, 22 (2), pp. 207-216. Cited 12335 times. doi: 10.1145/170036.170072Ali, M., Son, D.-H., Kang, S.-H., Nam, S.-R. An accurate CT saturation classification using a deep learning approach based on unsupervised feature extraction and supervised fine-tuning strategy (2017) Energies, 10 (11), art. no. 1830. Cited 32 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en10111830Araujo, M., Illanes, E., Chapman, E., Rodrigues, E. Effectiveness of interventions to prevent motorcycle injuries: systematic review of the literature (2017) International Journal of Injury Control and Safety Promotion, 24 (3), pp. 406-422. Cited 26 times. http://www.tandf.co.uk/journals/titles/17457300.asp doi: 10.1080/17457300.2016.1224901Chang, L.-Y., Wang, H.-W. Analysis of traffic injury severity: An application of non-parametric classification tree techniques (2006) Accident Analysis and Prevention, 38 (5), pp. 1019-1027. Cited 369 times. doi: 10.1016/j.aap.2006.04.009Cheng, W., Gill, G.S., Sakrani, T., Dasu, M., Zhou, J. Predicting motorcycle crash injury severity using weather data and alternative Bayesian multivariate crash frequency models (2017) Accident Analysis and Prevention, 108, pp. 172-180. Cited 57 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2017.08.032Das, S., Maurya, A.K. Modelling of motorised two-wheelers: A review of the literature (2018) Transport Reviews, 38 (2), pp. 209-231. Cited 19 times. http://www.tandf.co.uk/journals/titles/01441647.asp doi: 10.1080/01441647.2017.1317049Das, S., Dutta, A., Dixon, K., Minjares-Kyle, L., Gillette, G. Using Deep Learning in Severity Analysis of At-Fault Motorcycle Rider Crashes (2018) Transportation Research Record, 2672 (34), pp. 122-134. Cited 24 times. http://journals.sagepub.com/home/trr doi: 10.1177/0361198118797212Delen, D., Sharda, R., Bessonov, M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks (2006) Accident Analysis and Prevention, 38 (3), pp. 434-444. Cited 311 times. doi: 10.1016/j.aap.2005.06.024Elamrani Abou Elassad, Z., Mousannif, H., Al Moatassime, H., Karkouch, A. The application of machine learning techniques for driving behavior analysis: A conceptual framework and a systematic literature review (2020) Engineering Applications of Artificial Intelligence, 87, art. no. 103312. Cited 80 times. https://www.journals.elsevier.com/engineering-applications-of-artificial-intelligence doi: 10.1016/j.engappai.2019.103312Gabauer, D.J., Li, X. Influence of horizontally curved roadway section characteristics on motorcycle-to-barrier crash frequency (2015) Accident Analysis and Prevention, 77, pp. 105-112. Cited 25 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2015.02.006Haque, M.M., Chin, H.C. Right-angle crash vulnerability of motorcycles at signalized intersections: Mixed logit analysis (2010) Transportation Research Record, (2194), pp. 82-90. Cited 30 times. doi: 10.3141/2194-10Harnen, S., Radin Umar, R.S., Wong, S.V., Wan Hashim, W.I. Predictive Model for Motorcycle Accidents at Three-Legged Priority Junctions (2003) Traffic Injury Prevention, 4 (4), pp. 363-369. Cited 14 times. www.tandf.co.uk/journals/titles/15389588.asp doi: 10.1080/714040495Hashmienejad, S.H.-A., Hasheminejad, S.M.H. Traffic accident severity prediction using a novel multi-objective genetic algorithm (2017) International Journal of Crashworthiness, 22 (4), pp. 425-440. Cited 43 times. http://www.tandf.co.uk/journals/titles/13588265.asp doi: 10.1080/13588265.2016.1275431Hoos, H.H., Stützle, T. Stochastic local search: Foundations and applications (2004) Stochastic Local Search: Foundations and Applications, pp. 1-658. Cited 669 times. https://www.sciencedirect.com/book/9781558608726 ISBN: 978-155860872-6 doi: 10.1016/B978-1-55860-872-6.X5016-1Huang, H., Abdel-Aty, M. Multilevel data and Bayesian analysis in traffic safety (2010) Accident Analysis and Prevention, 42 (6), pp. 1556-1565. Cited 214 times. doi: 10.1016/j.aap.2010.03.013Huang, H., Chin, H.C., Haque, M.M. Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis (2008) Accident Analysis and Prevention, 40 (1), pp. 45-54. Cited 266 times. doi: 10.1016/j.aap.2007.04.002Jafari, S.A., Jahandideh, S., Jahandideh, M., Asadabadi, E.B. Prediction of road traffic death rate using neural networks optimised by genetic algorithm (Open Access) (2015) International Journal of Injury Control and Safety Promotion, 22 (2), pp. 153-157. Cited 14 times. http://www.tandf.co.uk/journals/titles/17457300.asp doi: 10.1080/17457300.2013.857695Jensupakarn, A., Kanitpong, K. Influences of motorcycle rider and driver characteristics and road environment on red light running behavior at signalized intersections (2018) Accident Analysis and Prevention, 113, pp. 317-324. Cited 37 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2018.02.007Jimenez, A., Bocarejo, J.P., Zarama, R., Yerpez, J. A case study analysis to examine motorcycle crashes in Bogota, Colombia (2015) Journal of Safety Research, 52, pp. 29-38. Cited 32 times. http://www.sciencedirect.com/science/journal/00224375 doi: 10.1016/j.jsr.2014.12.005Johnson, David S., Aragon, Cecilia R., McGeoch, Lyle A., Schevon, Catherine Optimization by simulated annealing. An experimental evaluation. Part I. Graph partitioning (1989) Operations Research, 37 (6), pp. 865-892. Cited 923 times. doi: 10.1287/opre.37.6.865Kanesalingam, S., Nayak, R. Sustainable Phase Change and Polymeric Water Absorbent Materials: Heat Stress Reduction in Helmets (2020) Sustainable Phase Change and Polymeric Water Absorbent Materials: Heat Stress Reduction in Helmets, pp. 1-145. https://link.springer.com/book/10.1007/978-981-15-5750-7 ISBN: 978-981155750-7; 978-981155749-1 doi: 10.1007/978-981-15-5750-7Tavakoli Kashani, A., Rabieyan, R., Besharati, M.M. A data mining approach to investigate the factors influencing the crash severity of motorcycle pillion passengers (Open Access) (2014) Journal of Safety Research, 51, pp. 93-98. Cited 62 times. http://www.sciencedirect.com/science/journal/00224375 doi: 10.1016/j.jsr.2014.09.004Kumar, V., Sarkar, B., Sharma, A.N., Mittal, M. New product launching with pricing, free replacement, rework, and warranty policies via genetic algorithmic approach (2019) International Journal of Computational Intelligence Systems, 12 (2), pp. 519-529. Cited 18 times. https://download.atlantis-press.com/article/125905794.pdf doi: 10.2991/ijcis.d.190401.001Li, X., Lord, D., Zhang, Y., Xie, Y. Predicting motor vehicle crashes using Support Vector Machine models (2008) Accident Analysis and Prevention, 40 (4), pp. 1611-1618. Cited 244 times. doi: 10.1016/j.aap.2008.04.010Li, Y., Ma, D., Zhu, M., Zeng, Z., Wang, Y. Identification of significant factors in fatal-injury highway crashes using genetic algorithm and neural network (2018) Accident Analysis and Prevention, 111, pp. 354-363. Cited 39 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2017.11.028Mannering, F. Temporal instability and the analysis of highway accident data (2018) Analytic Methods in Accident Research, 17, pp. 1-13. Cited 272 times. http://www.journals.elsevier.com/analytic-methods-in-accident-research/ doi: 10.1016/j.amar.2017.10.002Nguyen-Phuoc, D.Q., Oviedo-Trespalacios, O., Su, D.N., De Gruyter, C., Nguyen, T. Mobile phone use among car drivers and motorcycle riders: The effect of problematic mobile phone use, attitudes, beliefs and perceived risk (2020) Accident Analysis and Prevention, 143, art. no. 105592. Cited 50 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2020.105592Nguyen-Phuoc, D.Q., Oviedo-Trespalacios, O., Nguyen, T., Su, D.N. The effects of unhealthy lifestyle behaviours on risky riding behaviours – A study on app-based motorcycle taxi riders in Vietnam (Open Access) (2020) Journal of Transport and Health, 16, art. no. 100666. Cited 30 times. http://www.journals.elsevier.com/journal-of-transport-and-health/ doi: 10.1016/j.jth.2019.100666Ospina-Mateus, H., Quintana Jiménez, L.A. Understanding the impact of physical fatigue and postural comfort experienced during motorcycling: A systematic review (Open Access) (2019) Journal of Transport and Health, 12, pp. 290-318. Cited 17 times. http://www.journals.elsevier.com/journal-of-transport-and-health/ doi: 10.1016/j.jth.2019.02.003Ospina-Mateus, H., Quintana Jiménez, L.A., Lopez-Valdes, F.J., Salas-Navarro, K. Bibliometric analysis in motorcycle accident research: a global overview (2019) Scientometrics, 121 (2), pp. 793-815. Cited 32 times. http://www.springerlink.com/content/0138-9130 doi: 10.1007/s11192-019-03234-5Pai, C.-W., Hwang, K.P., Saleh, W. A mixed logit analysis of motorists' right-of-way violation in motorcycle accidents at priority T-junctions (Open Access) (2009) Accident Analysis and Prevention, 41 (3), pp. 565-573. Cited 65 times. doi: 10.1016/j.aap.2009.02.007Perez-Fuster, P., Rodrigo, M.F., Ballestar, M.L., Sanmartin, J. Modeling offenses among motorcyclists involved in crashes in Spain (2013) Accident Analysis and Prevention, 56, pp. 95-102. Cited 21 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2013.03.014Quddus, M.A., Noland, R.B., Chin, H.C. An analysis of motorcycle injury and vehicle damage severity using ordered probit models (2002) Journal of safety research, 33 (4), art. no. 322, pp. 445-462. Cited 271 times. doi: 10.1016/S0022-4375(02)00051-8Quinlan, J.R. Induction of Decision Trees (1986) Machine Learning, 1 (1), pp. 81-106. Cited 13533 times. doi: 10.1023/A:1022643204877Rezapour, M., Nazneen, S., Ksaibati, K. Application of deep learning techniques in predicting motorcycle crash severity (Open Access) (2020) Engineering Reports, 2 (7), art. no. e12175. Cited 20 times. https://onlinelibrary.wiley.com/journal/25778196 doi: 10.1002/eng2.12175Sameen, M.I., Pradhan, B. Severity prediction of traffic accidents with recurrent neural networks (2017) Applied Sciences (Switzerland), 7 (6), art. no. 476. Cited 118 times. http://www.mdpi.com/2076-3417/7/6/476/pdf doi: 10.3390/app7060476Santosa, B., Damayanti, R., Sarkar, B. Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: A case study in Indonesia (2016) Production and Manufacturing Research, 4 (1), pp. 90-113. Cited 13 times. www.tandfonline.com/tpmr doi: 10.1080/21693277.2016.1204961Savolainen, P., Mannering, F. Probabilistic models of motorcyclists' injury severities in single- and multi-vehicle crashes (2007) Accident Analysis and Prevention, 39 (5), pp. 955-963. Cited 356 times. doi: 10.1016/j.aap.2006.12.016Shankar, V., Mannering, F. An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity (Open Access) (1996) Journal of Safety Research, 27 (3), pp. 183-194. Cited 331 times. http://www.sciencedirect.com/science/journal/00224375 doi: 10.1016/0022-4375(96)00010-2Taamneh, M., Alkheder, S., Taamneh, S. Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates (2017) Journal of Transportation Safety and Security, 9 (2), pp. 146-166. Cited 45 times. http://www.tandfonline.com/toc/utss20/current doi: 10.1080/19439962.2016.1152338Teoh, E.R., Campbell, M. Role of motorcycle type in fatal motorcycle crashes (2010) Journal of Safety Research, 41 (6), pp. 507-512. Cited 60 times. doi: 10.1016/j.jsr.2010.10.005Theofilatos, A., Yannis, G. A review of powered-two-wheeler behaviour and safety (2015) International Journal of Injury Control and Safety Promotion, 22 (4), pp. 284-307. Cited 30 times. http://www.tandf.co.uk/journals/titles/17457300.asp doi: 10.1080/17457300.2014.908224http://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdfScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdfapplication/pdf182248https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/1/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf10a5ee66c0e546c073a2110f89f9f7aaMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdf.txtScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdf.txtExtracted texttext/plain2726https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/4/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf.txt8610ea1d33013c6f723ff84ebc3eae53MD54THUMBNAILScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdf.jpgScopus - Document details - Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists.pdf.jpgGenerated Thumbnailimage/jpeg6628https://repositorio.utb.edu.co/bitstream/20.500.12585/12240/5/Scopus%20-%20Document%20details%20-%20Extraction%20of%20decision%20rules%20using%20genetic%20algorithms%20and%20simulated%20annealing%20for%20prediction%20of%20severity%20of%20traffic%20accidents%20by%20motorcyclists.pdf.jpg68e9b9dbdbce6f4a9656b605c4d828fdMD5520.500.12585/12240oai:repositorio.utb.edu.co:20.500.12585/122402023-07-20 00:17:58.869Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |