Application of spatio-temporal filtering for atrial activity waveforms enhancement
In this paper, we propose to apply spatio-temporal filtering to atrial activity enhancement, prior to the detection of possible atrial arrhythmias. During normal sinus rhythm, the atrial activity is well synchronized with the ventricular one. The distances between ventricular QRS complexes and the p...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8962
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8962
- Palabra clave:
- Atrial activity enhancement
Atrial fibrillation
Spatial filtering
Spatio temporal filtering
Diseases
Electrocardiography
Flutter (aerodynamics)
Image processing
Seismic waves
Synchronization
Atrial activity
Atrial arrhythmia
Atrial fibrillation
Atrial flutter
Normal sinus rhythm
Pregnant woman
Spatial filterings
Spatio temporal filtering
Biomedical signal processing
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_75bd0e406fecd27449fbc13083b88805 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8962 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
title |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
spellingShingle |
Application of spatio-temporal filtering for atrial activity waveforms enhancement Atrial activity enhancement Atrial fibrillation Spatial filtering Spatio temporal filtering Diseases Electrocardiography Flutter (aerodynamics) Image processing Seismic waves Synchronization Atrial activity Atrial arrhythmia Atrial fibrillation Atrial flutter Normal sinus rhythm Pregnant woman Spatial filterings Spatio temporal filtering Biomedical signal processing |
title_short |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
title_full |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
title_fullStr |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
title_full_unstemmed |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
title_sort |
Application of spatio-temporal filtering for atrial activity waveforms enhancement |
dc.subject.keywords.none.fl_str_mv |
Atrial activity enhancement Atrial fibrillation Spatial filtering Spatio temporal filtering Diseases Electrocardiography Flutter (aerodynamics) Image processing Seismic waves Synchronization Atrial activity Atrial arrhythmia Atrial fibrillation Atrial flutter Normal sinus rhythm Pregnant woman Spatial filterings Spatio temporal filtering Biomedical signal processing |
topic |
Atrial activity enhancement Atrial fibrillation Spatial filtering Spatio temporal filtering Diseases Electrocardiography Flutter (aerodynamics) Image processing Seismic waves Synchronization Atrial activity Atrial arrhythmia Atrial fibrillation Atrial flutter Normal sinus rhythm Pregnant woman Spatial filterings Spatio temporal filtering Biomedical signal processing |
description |
In this paper, we propose to apply spatio-temporal filtering to atrial activity enhancement, prior to the detection of possible atrial arrhythmias. During normal sinus rhythm, the atrial activity is well synchronized with the ventricular one. The distances between ventricular QRS complexes and the preceding atrial P waves are approximately constant. However, during atrial arrhythmias such a synchronization does not exist. Although both atrial fibrillation (AF) and atrial flutter (AFL) are also characterized by irregularity of RR intervals, nevertheless it is this lack of atrioventricular synchronization and the associated irregularity of atrial activity (AA) that is the most straightforward symptom of atrial arrhythmias. In AFL episodes, the atrial activity tends to be more regular, whereas in AF it is almost completely unpredictable. Our objective is to enhance this activity to facilitate discrimination between the two arrhythmias. Spatio-temporal filtering (STF) was developed for detection of fetal QRS complexes in an ECG signal recorded from the abdomen of a pregnant woman. The filter can easily be applied to enhance the P waves in regular ECG signals. In this paper, however, we modify the learning phase of STF, to make it useful also for enhancement of abnormal atrial activity. The STF ability to enhance the atrial flutter waves is presented. An algorithm is proposed that allows for simple but effective discrimination between the two types of atrial irregular activity: AFL and AF. Tested on a database containing the cases of both atrial arrhythmias, the algorithm allows for their almost faultless recognition. © 2019 Association for Computing Machinery. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:40Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:40Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
ACM International Conference Proceeding Series; pp. 67-72 |
dc.identifier.isbn.none.fl_str_mv |
9781450372435 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8962 |
dc.identifier.doi.none.fl_str_mv |
10.1145/3365245.3365262 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56520286300 55985160800 57202468264 7003612212 7004127726 57213685902 |
identifier_str_mv |
ACM International Conference Proceeding Series; pp. 67-72 9781450372435 10.1145/3365245.3365262 Universidad Tecnológica de Bolívar Repositorio UTB 56520286300 55985160800 57202468264 7003612212 7004127726 57213685902 |
url |
https://hdl.handle.net/20.500.12585/8962 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
8 October 2019 through 10 October 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
publisher.none.fl_str_mv |
Association for Computing Machinery |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077965811&doi=10.1145%2f3365245.3365262&partnerID=40&md5=8b55a0295049daf735c2c27e31d67dda Scopus2-s2.0-85077965811 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2nd International Conference on Sensors, Signal and Image Processing, SSIP 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8962/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021670112854016 |
spelling |
2020-03-26T16:32:40Z2020-03-26T16:32:40Z2019ACM International Conference Proceeding Series; pp. 67-729781450372435https://hdl.handle.net/20.500.12585/896210.1145/3365245.3365262Universidad Tecnológica de BolívarRepositorio UTB5652028630055985160800572024682647003612212700412772657213685902In this paper, we propose to apply spatio-temporal filtering to atrial activity enhancement, prior to the detection of possible atrial arrhythmias. During normal sinus rhythm, the atrial activity is well synchronized with the ventricular one. The distances between ventricular QRS complexes and the preceding atrial P waves are approximately constant. However, during atrial arrhythmias such a synchronization does not exist. Although both atrial fibrillation (AF) and atrial flutter (AFL) are also characterized by irregularity of RR intervals, nevertheless it is this lack of atrioventricular synchronization and the associated irregularity of atrial activity (AA) that is the most straightforward symptom of atrial arrhythmias. In AFL episodes, the atrial activity tends to be more regular, whereas in AF it is almost completely unpredictable. Our objective is to enhance this activity to facilitate discrimination between the two arrhythmias. Spatio-temporal filtering (STF) was developed for detection of fetal QRS complexes in an ECG signal recorded from the abdomen of a pregnant woman. The filter can easily be applied to enhance the P waves in regular ECG signals. In this paper, however, we modify the learning phase of STF, to make it useful also for enhancement of abnormal atrial activity. The STF ability to enhance the atrial flutter waves is presented. An algorithm is proposed that allows for simple but effective discrimination between the two types of atrial irregular activity: AFL and AF. Tested on a database containing the cases of both atrial arrhythmias, the algorithm allows for their almost faultless recognition. © 2019 Association for Computing Machinery.Ministry of Science and Higher Education of the Russian Federation: BK-RAu-3/2018 European Social Fund, ESF: POWR.03.02.00-00-I029 European Commission, EUInternational Academy of Computing Technology (IACT)This work was partially supported by the Ministry of Science and Higher Education Funding (BK-RAu-3/2018) and co-financed by the European Union through the European Social Fund (grant POWR.03.02.00-00-I029).Recurso electrónicoapplication/pdfengAssociation for Computing Machineryhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077965811&doi=10.1145%2f3365245.3365262&partnerID=40&md5=8b55a0295049daf735c2c27e31d67ddaScopus2-s2.0-850779658112nd International Conference on Sensors, Signal and Image Processing, SSIP 2019Application of spatio-temporal filtering for atrial activity waveforms enhancementinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAtrial activity enhancementAtrial fibrillationSpatial filteringSpatio temporal filteringDiseasesElectrocardiographyFlutter (aerodynamics)Image processingSeismic wavesSynchronizationAtrial activityAtrial arrhythmiaAtrial fibrillationAtrial flutterNormal sinus rhythmPregnant womanSpatial filteringsSpatio temporal filteringBiomedical signal processing8 October 2019 through 10 October 2019Giraldo-Guzmán J.Kotas, MarianPiela M.Castells F.Łęski J.M.Contreras Ortiz, Sonia HelenaBeata Franczyk-Skora, M.B.D.K., Gluba, A., Prevention of sudden cardiac death in patients with chronic kidney disease (2012) BMC NephrologyCastells, F., Rieta, J.J., Millet, J., Zarzoso, V., Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias (2005) IEEE Transactions on Biomedical Engineering, 52 (2), pp. 258-267Chugh, S.S., Blackshear, J.L., Shen, W.-K., Hammill, S.C., Gersh, B.J., Epidemiology and natural history of atrial fibrillation: Clinical implications (2001) Journal of the American College of Cardiology, 37 (2), pp. 371-378Gallagher, M.M., Camm, A.J., Classification of atrial fibrillation (1997) Pacing and Clinical Electrophysiology, 20 (6), pp. 1603-1605Kotas, M., Jezewski, J., Horoba, K., Matonia, A., Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Computer Methods and Programs in Biomedicine, 104 (1), pp. 1-9Leski, J., Kotas, M., Linguistically defined clustering of data (2018) Int. Journal of Applied Mathematics and Computer Science, 28 (3), pp. 545-557Marriott, H.J., Atrioventricular synchronization and accrochage (1956) Circulation, 14 (1), pp. 38-43(2006) Working Together for Health: The World Health Report 2006: Policy Briefs, , W. H. OrganizationPoli, S., Barbaro, V., Bartolini, P., Calcagnini, G., Censi, F., Prediction of atrial fibrillation from surface ECG: Review of methods and algorithms (2003) Annali Dell’Istituto Superiore Di Sanità, 39 (2), pp. 195-203Przybyla, T., Kotas, M., Leski, J., On clustering based nonlinear projective filtering of biomedical signals (2018) Biomedical Signal Processing and Control, 44 (7), pp. 237-246Rieta, J., Millet-Roig, J., Zarzoso, V., Castells, F., Sanchez, C., Garcia-Civera, R., Morell, S., Atrial fibrillation, atrial flutter and normal sinus rhythm discrimination by means of blind source separation and spectral parameters extraction (2002) Computers in Cardiology, pp. 25-28Wolf, P.A., Abbott, R.D., Kannel, W.B., Atrial fibrillation as an independent risk factor for stroke: The framingham study (1991) Stroke, 22 (8), pp. 983-988http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8962/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8962oai:repositorio.utb.edu.co:20.500.12585/89622023-05-25 15:52:54.545Repositorio Institucional UTBrepositorioutb@utb.edu.co |