Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia

Citrus greening disease (Huanglongbing-HLB) is considered the most destructive citrus disease worldwide. Of the three species of Candidatus liberibacter associated with HLB, two have been recently reported in Latin America. The first report of HLB in Colombia was in March 2016. In this paper, a data...

Full description

Autores:
Chavarro Mesa, Edisson
De la Hoz Domínguez, Enrique José
Fennix Agudelo, Mary Andrea
Miranda-Castro, Wendy
Ángel-Díaz, Jorge Evelio
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10025
Acceso en línea:
https://hdl.handle.net/20.500.12585/10025
https://ieeexplore.ieee.org/document/9247900
Palabra clave:
Diaphorina citri
Random Forest
K-Nearest Neighbors
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_755c49a16a00c2c3d110c5d9a8fd4115
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10025
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
title Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
spellingShingle Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
Diaphorina citri
Random Forest
K-Nearest Neighbors
LEMB
title_short Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
title_full Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
title_fullStr Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
title_full_unstemmed Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
title_sort Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia
dc.creator.fl_str_mv Chavarro Mesa, Edisson
De la Hoz Domínguez, Enrique José
Fennix Agudelo, Mary Andrea
Miranda-Castro, Wendy
Ángel-Díaz, Jorge Evelio
dc.contributor.author.none.fl_str_mv Chavarro Mesa, Edisson
De la Hoz Domínguez, Enrique José
Fennix Agudelo, Mary Andrea
Miranda-Castro, Wendy
Ángel-Díaz, Jorge Evelio
dc.subject.keywords.spa.fl_str_mv Diaphorina citri
Random Forest
K-Nearest Neighbors
topic Diaphorina citri
Random Forest
K-Nearest Neighbors
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Citrus greening disease (Huanglongbing-HLB) is considered the most destructive citrus disease worldwide. Of the three species of Candidatus liberibacter associated with HLB, two have been recently reported in Latin America. The first report of HLB in Colombia was in March 2016. In this paper, a dataset was extracted for six departments in the northern zone of Colombia, where has been previously reported, applying image georeferencing with QGIS Software. Preliminary Random Forest and K-Nearest Neighbors (KNN) machine learning models were used in order to test and validate the obtained results, for disease monitoring and HLB incidence prediction. The performance of both models was also compared, obtaining a 100% AUC value with Random Forest model.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-09
dc.date.accessioned.none.fl_str_mv 2021-02-16T15:09:08Z
dc.date.available.none.fl_str_mv 2021-02-16T15:09:08Z
dc.date.submitted.none.fl_str_mv 2021-02-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv E. Chavarro-Mesa, E. Delahoz-Domínguez, M. Fennix-Agudelo, W. Miranda-Castro and J. E. Ángel-Díaz, "Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia," 2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020), Cali, Colombia, 2020, pp. 1-4, doi: 10.1109/ColCACI50549.2020.9247900.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10025
dc.identifier.url.none.fl_str_mv https://ieeexplore.ieee.org/document/9247900
dc.identifier.doi.none.fl_str_mv 10.1109/ColCACI50549.2020.9247900
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv E. Chavarro-Mesa, E. Delahoz-Domínguez, M. Fennix-Agudelo, W. Miranda-Castro and J. E. Ángel-Díaz, "Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia," 2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020), Cali, Colombia, 2020, pp. 1-4, doi: 10.1109/ColCACI50549.2020.9247900.
10.1109/ColCACI50549.2020.9247900
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10025
https://ieeexplore.ieee.org/document/9247900
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/1/169.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/3/169.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/4/169.pdf.jpg
bitstream.checksum.fl_str_mv cb3669c1794e90f95eda48f00923aaf7
e20ad307a1c5f3f25af9304a7a7c86b6
e11a455cbdd4fab4276841a13a425192
f3fbf4bcebe8110048242b68d3d99c49
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021635958636544
spelling Chavarro Mesa, Edisson800ba77d-129a-48f9-bc50-2a8c25be1208De la Hoz Domínguez, Enrique José140641a4-ba89-4a1d-bbcb-0c3f2d597b0dFennix Agudelo, Mary Andreab6da7c0e-a860-4d45-a87b-3d6871885959Miranda-Castro, Wendy42268df0-ad55-478f-ba40-62bdc92ac36bÁngel-Díaz, Jorge Evelio1ddbfb9b-542f-4e38-99b4-3cb2c41a1d132021-02-16T15:09:08Z2021-02-16T15:09:08Z2020-11-092021-02-12E. Chavarro-Mesa, E. Delahoz-Domínguez, M. Fennix-Agudelo, W. Miranda-Castro and J. E. Ángel-Díaz, "Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombia," 2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020), Cali, Colombia, 2020, pp. 1-4, doi: 10.1109/ColCACI50549.2020.9247900.https://hdl.handle.net/20.500.12585/10025https://ieeexplore.ieee.org/document/924790010.1109/ColCACI50549.2020.9247900Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarCitrus greening disease (Huanglongbing-HLB) is considered the most destructive citrus disease worldwide. Of the three species of Candidatus liberibacter associated with HLB, two have been recently reported in Latin America. The first report of HLB in Colombia was in March 2016. In this paper, a dataset was extracted for six departments in the northern zone of Colombia, where has been previously reported, applying image georeferencing with QGIS Software. Preliminary Random Forest and K-Nearest Neighbors (KNN) machine learning models were used in order to test and validate the obtained results, for disease monitoring and HLB incidence prediction. The performance of both models was also compared, obtaining a 100% AUC value with Random Forest model.4 páginasapplication/pdfeng2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)Preliminary machine learning model for citrus greening disease (Huanglongbing-HLB) prediction in Colombiainfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85Diaphorina citriRandom ForestK-Nearest NeighborsLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresM. M. Robles-González et al., "Síntomas del Huanglongbing (HLB) enárboles de limón mexicano [Citrus aurantifolia (Christm) Swingle] y su dispersión en el estado de Colima México", Rev. Chapingo. Ser. Hortic, vol. 19, no. 1, pp. 15-31, 2013.C. Santivañez, G. Mora Aguilera, G. Díaz Padilla, J. I. Lopez Arrollo and P. Vernal Hurtado, "Citrus: Marco estratégico para la gestión regional del Huanglongbing en América Latina y el Caribe", 2013.T. H. Hung, S. C. Hung, C. N. Chen, M. H. Hsu and H. J. Su, "Detection by PCR of Candidatus Liberibacter asiaticus the bacterium causing citrus huanglongbing in vector psyllids: Application to the study of vector-pathogen relationships", Plant Pathol, 2004.K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb and R. F. Lee, "Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida", Phytopathology, 2008."La amenaza del HLB (Huanglongbing de los cítricos) para la citricultura nacional", Nov 2013, [online] Available: http://www.senasa.gov.ar/contenido.php?to=nin=11io=18493.Comunicado de prensa: autoridades del SFE confirman presencia de ‘Dragón Amarillo’ en árboles de la Zona Norte. In: Ministerio de Agricultura y Ganadería de Costa Rica, Sep 2011, [online] Available: https://www.sfe.go.cr/documentos/comunicados/2011/2102 2011 SFE confirma presencia HLB en zona norte.pdf.K. L. Manjunath, C. Ramadugu, V. M. Majil, S. Williams, M. Irey and R. F. Lee, "First report of the citrus huanglongbing associated bacterium ‘candidatus liberibacter asiaticus’ from sweet orange mexican lime and Asian citrus psyllid in Belize", Plant Dis, 2010.Y. Martínez et al., "First report of ‘Candidatus Liberibacter asiaticus’ associated with Huanglongbing in Cuba", Plant Pathol, vol. 58, no. 2, pp. 389, 2009."Detection of Huanglongbing (’Candidatus Liberibacter asiaticus’) in the municipality of Tizimin Yucatan Mexico. Official pest reports", Phytosanitary Alert System, Nov 2009, [online] Available: http://www.pestalert.org/oprDetail.cfm?oprID=384.L. Matos, M. E. Hilf and J. Camejo, "First report of ‘candidatus liberibacter asiaticus’ associated with citrus huanglongbing in the Dominican Republic", Plant Disease, 2009.D. D. C. Teixeira et al., "Citrus huanglongbing in São Paulo State Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease", Mol. Cell. Probes, 2005.J. M. Bové, "Huanglongbing: A destructive newly-emerging centuryold disease of citrus", Journal of Plant Pathology, 2006.E. E. Ebratt-Ravelo, L. T. Rubio-González, V. A. Costa, E. M. Zambrano-Gómez, Á. P. Castro-Ávila and M. Y. Santamaría-Galindo, "Primer Registro de Tamarixia radiata (Waterston 1922)(Hymenoptera: Eulophidae) en Colombia", Rev. Fac. Nac. Agron, vol. 64, no. 2, pp. 6141-6146, 2011.E. E. Ebratt-Ravelo, L. T. Rubio-González, V. A. Costa, Á. P. Castro-Ávila, E. M. Zambrano-Gómez and J. E. Ángel-Díaz, "Diaphorina citri (Kuwayama 1907) and Tamarixia radiata (Waterson 1922) in citrus crops of Cundinamarca Colombia", Agron. Colomb, vol. 29, no. 3, pp. 487-493, 2011.J. E. Ángel et al., "Citrus huanglongbing: Validación de PCR en tiempo real para la detección de Candidatus Liberibacter asiaticus y Candidatus Liberibacter americanus en Colombia", Agron. Colomb, 2014.J. E. Ángel et al., "Comparisión de métodos de extracción ADN para detección de huanglongbing en Colombia", Agron. Colomb, 2014."Boletín No. 8: Alerta Amarilla todos unidos contra el Huanglongbing (HLB) de los cítricos y su vector Diaphorina citri Kuwayama", Subgerencia de Protección Vegetal del ICA, 2015.A. Pourreza, W. S. Lee, R. Ehsani, J. K. Schueller and E. Raveh, "An optimum method for real-time in-field detection of Huanglongbing disease using a vision sensor", Comput. Electron. Agric, 2015.S. R. Maniyath et al., "Plant disease detection using machine learning", Proceedings - 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control ICDI3C 2018, 2018.S. Futch, S. Weingarten and M. Irey, "Determining HLB Infection Levels using Multiple Survey Methods in Florida Citrus", Procedings Florida State Hortic. Soc, 2009.J. J. Garza-Saldaña, S. Varela-Fuentes and W. Gómez-Flores, "Métodos para la detección presuntiva de Huanglongbing (HLB) en cítricos", CienciaUAT, 2017.L. Emmi, M. Gonzalez-De-Soto and P. Gonzalez-De-Santos, "Configuring a fleet of ground robots for agricultural tasks", Advances in Intelligent Systems and Computing, 2014.J. M. Peña, J. Torres-Sánchez, A. Serrano-Pérez, A. I. de Castro and F. López-Granados, "Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution", Sensors, 2015.S. K. Sarkar, J. Das, R. Ehsani and V. Kumar, "Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing", 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5143-5148, 2016.C. B. Wetterich, R. Felipe de Oliveira Neves, J. Belasque, R. Ehsani and L. G. Marcassa, "Detection of Huanglongbing in Florida using fluorescence imaging spectroscopy and machine-learning methods", Appl. Opt, 2017.C. B. Wetterich, R. Kumar, S. Sankaran, J. Belasque Junior, R. Ehsani and L. G. Marcassa, "A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of Huanglongbing citrus disease in the Usa and Brazil", J. Spectrosc, 2013.B. Sandika, S. Avil, S. Sanat and P. Srinivasu, "Random forest based classification of diseases in grapes from images captured in uncontrolled environments", International Conference on Signal Processing Proceedings ICSP, 2016.K. P. Ferentinos, "Deep learning models for plant disease detection and diagnosis", Comput. Electron. Agric, 2018.S. P. Mohanty, D. P. Hughes and M. Salathé, "Using deep learning for image-based plant disease detection", Front. Plant Sci, 2016.L. Breiman, "Random forests", Mach. Learn, 2001.M. N. Wright and A. Ziegler, "Ranger: A fast implementation of random forests for high dimensional data in C++ and R", J. Stat. Softw, 2017.A. Kataria and M. D. Singh, "A Review of Data Classification Using K-Nearest Neighbour Algorithm", Int. J. Emerg. Technol. Adv. Eng, 2013.http://purl.org/coar/resource_type/c_c94fORIGINAL169.pdf169.pdfAbstractapplication/pdf85327https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/1/169.pdfcb3669c1794e90f95eda48f00923aaf7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT169.pdf.txt169.pdf.txtExtracted texttext/plain887https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/3/169.pdf.txte11a455cbdd4fab4276841a13a425192MD53THUMBNAIL169.pdf.jpg169.pdf.jpgGenerated Thumbnailimage/jpeg44520https://repositorio.utb.edu.co/bitstream/20.500.12585/10025/4/169.pdf.jpgf3fbf4bcebe8110048242b68d3d99c49MD5420.500.12585/10025oai:repositorio.utb.edu.co:20.500.12585/100252023-05-26 09:29:47.237Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=