Exergy study of air-conditioned space of a prototype scale of a river vessel room
The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic effic...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8996
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8996
- Palabra clave:
- Air conditioning
Thermal load
Air-conditioned spaces
Exergetic efficiency
Exergy destructions
Per unit
Exergy
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_726232b001c14c977962d99137bfeb3e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8996 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
title |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
spellingShingle |
Exergy study of air-conditioned space of a prototype scale of a river vessel room Air conditioning Thermal load Air-conditioned spaces Exergetic efficiency Exergy destructions Per unit Exergy |
title_short |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
title_full |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
title_fullStr |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
title_full_unstemmed |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
title_sort |
Exergy study of air-conditioned space of a prototype scale of a river vessel room |
dc.subject.keywords.none.fl_str_mv |
Air conditioning Thermal load Air-conditioned spaces Exergetic efficiency Exergy destructions Per unit Exergy |
topic |
Air conditioning Thermal load Air-conditioned spaces Exergetic efficiency Exergy destructions Per unit Exergy |
description |
The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016 |
dc.identifier.isbn.none.fl_str_mv |
9780791850596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8996 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE2016-65093 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56581610900 57194727134 56581727500 57194716721 |
identifier_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016 9780791850596 10.1115/IMECE2016-65093 Universidad Tecnológica de Bolívar Repositorio UTB 56581610900 57194727134 56581727500 57194716721 |
url |
https://hdl.handle.net/20.500.12585/8996 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
11 November 2016 through 17 November 2016 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fc Scopus2-s2.0-85021784501 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8996/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021746653659136 |
spelling |
2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-20169780791850596https://hdl.handle.net/20.500.12585/899610.1115/IMECE2016-65093Universidad Tecnológica de BolívarRepositorio UTB56581610900571947271345658172750057194716721The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME.American Society of Mechanical Engineers (ASME)Recurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fcScopus2-s2.0-85021784501ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016Exergy study of air-conditioned space of a prototype scale of a river vessel roominfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir conditioningThermal loadAir-conditioned spacesExergetic efficiencyExergy destructionsPer unitExergy11 November 2016 through 17 November 2016Fajardo Cuadro, Juan GabrielGuerra M.A.Sarria B.Cruz O.Hongmin, L., Simulation and Optimization of Indoor Thermal Environment in a Ship Airconditioning System (2011) Procedia Environmental Sciences, 11, pp. 1055-1063Yu, J., Tian, L., Xu, X., Wang, J., Evaluation on energy and thermal performance for office building envelope in different climate zones of China (2015) Energy and Buildings, 86, pp. 626-639Lei, J., Yangb, J., Yang, E.-H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore (2016) Applied Energy, 162 (15), pp. 207-217Acero, J.A., Herranz-Pascual, K., A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques (2015) Building and Environment, 93, pp. 245-257Puangmaleea, N., Hussaroa, K., Boonyayothinc, V., Khedaria, J., A Field of the Thermal Comfort in University Buildings in Thailand under Air Condition Room (2015) Energy Procedia, 79, pp. 480-485Ally, M.R., Munk, J.D., Baxter, V.D., Gehl, A.C., Exergy analysis and operational efficiency of a horizontal ground-source heat pump system operated in a low-energy test house under simulated occupancy conditions5 (2012) International Journal of Refrigeration, 35 (4), pp. 1092-1103Schmidt, D., Low exergy systems for high-performance buildings and communities (2009) Energy and Buildings, 41, pp. 331-336Sakulpipatsin, P., Itard, L., An exergy applications for an analys of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99Schmidt, D., Ala-Juusela, M., (2004) Low Exergy Systems for Heating and Cooling of BuildingsAli, M., Vukovica, V., Sahirb, M.H., Fontanellaa, G., Energy analysis of chilled water system configurations using simulation-based optimization (2013) Energy and Buildings, 59, pp. 111-122Inard, C., Rutman, E., Bailly, A., Allard, F., A global approach of indoor environment in an air-conditioned office room (2005) Building and Environment, 40, pp. 29-37Duret, S., Hoang, H.-M., Flick, D., Laguerre, O., Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products (2014) International Journal of Refrigeration, 46, pp. 17-25Streeter, V.L., Wylie, E.B., Bedford, K.W., (2000) Fluid Mechanics, , USA: McGraw HillCengel, Y.A., Boles, M.A., (2010) Thermodynamics, , USAKeçebas, A., Yabanova, I., Yumurtaci, M., Artificial neural network modeling of geothermal district heating system thought (2012) Energy Conversion and Management, 64, pp. 206-212Fudholi, A., Sopian, K., Othman, M.Y., Mohd, H.R., Energy and exergy analyses of solar drying system of red seaweed (2014) Energy and Buildings, 68, pp. 121-129Taghavifar, H., Anvari, S., Saray, R.K., Khalilarya, S., Jafarmadar, S., Taghavifar, H., Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components (2015) Applied Thermal Engineering, 89, pp. 156-168Sakulpipatsin, P., (2008) Exergy Efficient Building Design, , Delft: Technische Universiteit Delft(2005) Fundamentals Handbook, , ASHRAE, USA: ASHRAE(2002) Guide for Crew Hability on Ships, , ABS, Houston: ABSBejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & Sonshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8996/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8996oai:repositorio.utb.edu.co:20.500.12585/89962023-05-26 09:18:27.502Repositorio Institucional UTBrepositorioutb@utb.edu.co |