Exergy study of air-conditioned space of a prototype scale of a river vessel room

The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic effic...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8996
Acceso en línea:
https://hdl.handle.net/20.500.12585/8996
Palabra clave:
Air conditioning
Thermal load
Air-conditioned spaces
Exergetic efficiency
Exergy destructions
Per unit
Exergy
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_726232b001c14c977962d99137bfeb3e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8996
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Exergy study of air-conditioned space of a prototype scale of a river vessel room
title Exergy study of air-conditioned space of a prototype scale of a river vessel room
spellingShingle Exergy study of air-conditioned space of a prototype scale of a river vessel room
Air conditioning
Thermal load
Air-conditioned spaces
Exergetic efficiency
Exergy destructions
Per unit
Exergy
title_short Exergy study of air-conditioned space of a prototype scale of a river vessel room
title_full Exergy study of air-conditioned space of a prototype scale of a river vessel room
title_fullStr Exergy study of air-conditioned space of a prototype scale of a river vessel room
title_full_unstemmed Exergy study of air-conditioned space of a prototype scale of a river vessel room
title_sort Exergy study of air-conditioned space of a prototype scale of a river vessel room
dc.subject.keywords.none.fl_str_mv Air conditioning
Thermal load
Air-conditioned spaces
Exergetic efficiency
Exergy destructions
Per unit
Exergy
topic Air conditioning
Thermal load
Air-conditioned spaces
Exergetic efficiency
Exergy destructions
Per unit
Exergy
description The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:44Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:44Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016
dc.identifier.isbn.none.fl_str_mv 9780791850596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8996
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE2016-65093
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56581610900
57194727134
56581727500
57194716721
identifier_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2016
9780791850596
10.1115/IMECE2016-65093
Universidad Tecnológica de Bolívar
Repositorio UTB
56581610900
57194727134
56581727500
57194716721
url https://hdl.handle.net/20.500.12585/8996
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 11 November 2016 through 17 November 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fc
Scopus2-s2.0-85021784501
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8996/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021746653659136
spelling 2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-20169780791850596https://hdl.handle.net/20.500.12585/899610.1115/IMECE2016-65093Universidad Tecnológica de BolívarRepositorio UTB56581610900571947271345658172750057194716721The study was conducted on a scale prototype, which simulates one of the rooms in the real vessel air conditioning system. The main results are as follows: the higher the thermal load, the higher the exergy destruction, and increasing the average temperature in the room increases the exergetic efficiency and reduces the exergy destruction. There is an optimal thermal load per unit area of 214.074 W/m2. The highest exergetic efficiencies and lowest values of the exergy destruction indices occur when the average temperature of the room is in the comfort range recommended by ASHRAE, from 22 to 24°C. Copyright © 2016 by ASME.American Society of Mechanical Engineers (ASME)Recurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021784501&doi=10.1115%2fIMECE2016-65093&partnerID=40&md5=90a0b1f7424c4fc1c3edfc4afe91c5fcScopus2-s2.0-85021784501ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016Exergy study of air-conditioned space of a prototype scale of a river vessel roominfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir conditioningThermal loadAir-conditioned spacesExergetic efficiencyExergy destructionsPer unitExergy11 November 2016 through 17 November 2016Fajardo Cuadro, Juan GabrielGuerra M.A.Sarria B.Cruz O.Hongmin, L., Simulation and Optimization of Indoor Thermal Environment in a Ship Airconditioning System (2011) Procedia Environmental Sciences, 11, pp. 1055-1063Yu, J., Tian, L., Xu, X., Wang, J., Evaluation on energy and thermal performance for office building envelope in different climate zones of China (2015) Energy and Buildings, 86, pp. 626-639Lei, J., Yangb, J., Yang, E.-H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore (2016) Applied Energy, 162 (15), pp. 207-217Acero, J.A., Herranz-Pascual, K., A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques (2015) Building and Environment, 93, pp. 245-257Puangmaleea, N., Hussaroa, K., Boonyayothinc, V., Khedaria, J., A Field of the Thermal Comfort in University Buildings in Thailand under Air Condition Room (2015) Energy Procedia, 79, pp. 480-485Ally, M.R., Munk, J.D., Baxter, V.D., Gehl, A.C., Exergy analysis and operational efficiency of a horizontal ground-source heat pump system operated in a low-energy test house under simulated occupancy conditions5 (2012) International Journal of Refrigeration, 35 (4), pp. 1092-1103Schmidt, D., Low exergy systems for high-performance buildings and communities (2009) Energy and Buildings, 41, pp. 331-336Sakulpipatsin, P., Itard, L., An exergy applications for an analys of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99Schmidt, D., Ala-Juusela, M., (2004) Low Exergy Systems for Heating and Cooling of BuildingsAli, M., Vukovica, V., Sahirb, M.H., Fontanellaa, G., Energy analysis of chilled water system configurations using simulation-based optimization (2013) Energy and Buildings, 59, pp. 111-122Inard, C., Rutman, E., Bailly, A., Allard, F., A global approach of indoor environment in an air-conditioned office room (2005) Building and Environment, 40, pp. 29-37Duret, S., Hoang, H.-M., Flick, D., Laguerre, O., Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products (2014) International Journal of Refrigeration, 46, pp. 17-25Streeter, V.L., Wylie, E.B., Bedford, K.W., (2000) Fluid Mechanics, , USA: McGraw HillCengel, Y.A., Boles, M.A., (2010) Thermodynamics, , USAKeçebas, A., Yabanova, I., Yumurtaci, M., Artificial neural network modeling of geothermal district heating system thought (2012) Energy Conversion and Management, 64, pp. 206-212Fudholi, A., Sopian, K., Othman, M.Y., Mohd, H.R., Energy and exergy analyses of solar drying system of red seaweed (2014) Energy and Buildings, 68, pp. 121-129Taghavifar, H., Anvari, S., Saray, R.K., Khalilarya, S., Jafarmadar, S., Taghavifar, H., Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components (2015) Applied Thermal Engineering, 89, pp. 156-168Sakulpipatsin, P., (2008) Exergy Efficient Building Design, , Delft: Technische Universiteit Delft(2005) Fundamentals Handbook, , ASHRAE, USA: ASHRAE(2002) Guide for Crew Hability on Ships, , ABS, Houston: ABSBejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & Sonshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8996/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8996oai:repositorio.utb.edu.co:20.500.12585/89962023-05-26 09:18:27.502Repositorio Institucional UTBrepositorioutb@utb.edu.co