Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images

Ultrasound imaging is a safe and cost-effective diagnostic tool, but the quality of the images is affected by speckle noise and artifacts. Anisotropic diffusion filters can be used to reduce noise and preserve the edges in the image. However, this technique is very sensitive to the number of iterati...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9148
Acceso en línea:
https://hdl.handle.net/20.500.12585/9148
Palabra clave:
Anisotropic diffusion filtering
Speckle reduction
Stopping criterion
Ultrasound image enhancement
Cost effectiveness
Diffusion
Image enhancement
Optical anisotropy
Speckle
Ultrasonic imaging
Vision
Anisotropic diffusion filtering
Anisotropic diffusion filters
Number of iterations
Speckle reduction
Stopping criteria
Ultrasound image enhancements
Ultrasound images
Ultrasound imaging
Image denoising
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6f83b2bef3e089d574f646f945b4b2c7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9148
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
title Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
spellingShingle Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
Anisotropic diffusion filtering
Speckle reduction
Stopping criterion
Ultrasound image enhancement
Cost effectiveness
Diffusion
Image enhancement
Optical anisotropy
Speckle
Ultrasonic imaging
Vision
Anisotropic diffusion filtering
Anisotropic diffusion filters
Number of iterations
Speckle reduction
Stopping criteria
Ultrasound image enhancements
Ultrasound images
Ultrasound imaging
Image denoising
title_short Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
title_full Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
title_fullStr Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
title_full_unstemmed Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
title_sort Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Images
dc.subject.keywords.none.fl_str_mv Anisotropic diffusion filtering
Speckle reduction
Stopping criterion
Ultrasound image enhancement
Cost effectiveness
Diffusion
Image enhancement
Optical anisotropy
Speckle
Ultrasonic imaging
Vision
Anisotropic diffusion filtering
Anisotropic diffusion filters
Number of iterations
Speckle reduction
Stopping criteria
Ultrasound image enhancements
Ultrasound images
Ultrasound imaging
Image denoising
topic Anisotropic diffusion filtering
Speckle reduction
Stopping criterion
Ultrasound image enhancement
Cost effectiveness
Diffusion
Image enhancement
Optical anisotropy
Speckle
Ultrasonic imaging
Vision
Anisotropic diffusion filtering
Anisotropic diffusion filters
Number of iterations
Speckle reduction
Stopping criteria
Ultrasound image enhancements
Ultrasound images
Ultrasound imaging
Image denoising
description Ultrasound imaging is a safe and cost-effective diagnostic tool, but the quality of the images is affected by speckle noise and artifacts. Anisotropic diffusion filters can be used to reduce noise and preserve the edges in the image. However, this technique is very sensitive to the number of iterations selected. This paper proposes a stopping criterion for effective noise removal without blurring the edges, based on the relative variance between the estimated denoised image and the original one. Different quality metrics were evaluated in 25 test images. The results suggest that the proposed stopping criterion can be implemented efficiently and aids in the process of automation of the filter. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:03Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:03Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier.isbn.none.fl_str_mv 9781728114910
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9148
dc.identifier.doi.none.fl_str_mv 10.1109/STSIVA.2019.8730287
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57209541901
57210822856
identifier_str_mv 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
9781728114910
10.1109/STSIVA.2019.8730287
Universidad Tecnológica de Bolívar
Repositorio UTB
57209541901
57210822856
url https://hdl.handle.net/20.500.12585/9148
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 24 April 2019 through 26 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068081454&doi=10.1109%2fSTSIVA.2019.8730287&partnerID=40&md5=547d371e28c0c01ef46a5d37bd2fb3a8
Scopus2-s2.0-85068081454
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9148/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021604409081856
spelling 2020-03-26T16:33:03Z2020-03-26T16:33:03Z20192019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings9781728114910https://hdl.handle.net/20.500.12585/914810.1109/STSIVA.2019.8730287Universidad Tecnológica de BolívarRepositorio UTB5720954190157210822856Ultrasound imaging is a safe and cost-effective diagnostic tool, but the quality of the images is affected by speckle noise and artifacts. Anisotropic diffusion filters can be used to reduce noise and preserve the edges in the image. However, this technique is very sensitive to the number of iterations selected. This paper proposes a stopping criterion for effective noise removal without blurring the edges, based on the relative variance between the estimated denoised image and the original one. Different quality metrics were evaluated in 25 test images. The results suggest that the proposed stopping criterion can be implemented efficiently and aids in the process of automation of the filter. © 2019 IEEE.IEEE Colombia Section;IEEE Signal Processing Society Colombia Chapter;Universidad Industrial de SantanderRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068081454&doi=10.1109%2fSTSIVA.2019.8730287&partnerID=40&md5=547d371e28c0c01ef46a5d37bd2fb3a8Scopus2-s2.0-8506808145422nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019Selection of a Stopping Criterion for Anisotropic Diffusion Filtering in Ultrasound Imagesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAnisotropic diffusion filteringSpeckle reductionStopping criterionUltrasound image enhancementCost effectivenessDiffusionImage enhancementOptical anisotropySpeckleUltrasonic imagingVisionAnisotropic diffusion filteringAnisotropic diffusion filtersNumber of iterationsSpeckle reductionStopping criteriaUltrasound image enhancementsUltrasound imagesUltrasound imagingImage denoising24 April 2019 through 26 April 2019Guillen J.E.I.Contreras Ortiz, Sonia Helena(2018) Nacimiento y Defunciones 2016-2017pr, p. 12. , DANE, Estadisticas vitales. DANE, mar(2018) Global Health Estimates 2016: Dalys by Cause Globally, 2016 and 2000., , World Health Organization, JunePerona, P., Malik, J., Scale-Space and edge detection using anisotropic diffusion (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), pp. 629-639. , JulyYu, Y., Acton, S., Speckle reducing Anisotropic diffusion (2002) IEEE Transactions on Image Processing, 11 (1260-1270), pp. 629-639. , NovemberAbd-Elmoniem, K.Z., Kadah, Y., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Transactions on Biomedical Engineering, 49 (9), pp. 997-1014. , SeptMittal, D., Kumar, V., Saxena, S.C., Khandelwal, N., Kalra, N., Enhancement of the ultrasound images by modified anisotropic diffusion method (2010) Medical & Biological Engineering & Computing, 48 (12), pp. 1281-1291Xu, J., Jia, Y., Shi, Z., Pang, K., An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation (2016) Signal Processing, 119, pp. 80-91Garg, A., Khandelwal, V., Combination of spatial domain filters for speckle noise reduction in ultrasound medical images (2018) Advances in Electrical and Electronic Engineering, 15 (5), pp. 857-865Weickert, J., Coherence-enhancing diffusion of colour images1 (1999) Image and Vision Computing, 17 (3-4), pp. 201-212Mrázek, P., Navara, M., Selection of optimal stopping time for nonlinear diffusion filtering (2003) International Journal of Computer Vision, 52 (2-3), pp. 189-203Tsiotsios, C., Petrou, M., On the choice of the parameters for anisotropic diffusion in image processing (2013) Pattern Recognition, 46 (5), pp. 1369-1381Fernández, J.-J., Li, S., An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms (2003) Journal of Structural Biology, 144 (1-2), pp. 152-161Giraldo-Guzmán, J., Porto-Solano, O., Cadena-Bonfanti, A., Contreras-Ortiz, S.H., Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering (2015) 10th International Symposium on Medical Information Processing and Analysis, 9287, p. 92871F. , International Society for Optics and PhotonicsContreras-Ortiz, S.H., Fox, M.D., Hexagonal filters for ultrasound images (2014) Journal of Electronic Imaging, 23 (4), p. 043022Burckhardt, C.B., Speckle in ultrasound b-mode scans (1978) Sonics and Ultrasonics, IEEE Transactions on, 25 (1), pp. 1-6Wang, Z., Bovik, A.C., A universal image quality index (2002) IEEE Signal Processing Letters, 9 (3), pp. 81-84Jensen, J.A., Field: A program for simulating ultrasound systems (1997) Medical & Biological Engineering & Computing, 34 (1), pp. 351-353http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9148/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9148oai:repositorio.utb.edu.co:20.500.12585/91482023-05-25 15:54:05.714Repositorio Institucional UTBrepositorioutb@utb.edu.co