A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals

This paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system is solidly grounded at each load point and (ii) when the neutral terminal is onl...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11116
Acceso en línea:
https://hdl.handle.net/20.500.12585/11116
https://doi.org/10.1016/j.epsr.2022.108264
Palabra clave:
Bipolar DC networks
Asymmetric constant power loads
Successive approximations power flow method
Effect of the neutral conductor
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6f78a538077c4f5fc2458b4d1b756345
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11116
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
title A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
spellingShingle A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
Bipolar DC networks
Asymmetric constant power loads
Successive approximations power flow method
Effect of the neutral conductor
LEMB
title_short A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
title_full A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
title_fullStr A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
title_full_unstemmed A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
title_sort A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
dc.subject.keywords.es_CO.fl_str_mv Bipolar DC networks
Asymmetric constant power loads
Successive approximations power flow method
Effect of the neutral conductor
topic Bipolar DC networks
Asymmetric constant power loads
Successive approximations power flow method
Effect of the neutral conductor
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system is solidly grounded at each load point and (ii) when the neutral terminal is only grounded at the substation bus. The problem is solved using the successive approximation power flow method. Numerical results in two test feeders composed of 4 and 25 nodes demonstrate that the successive approximation power flow approach is adequate to solve the problem. It is also demonstrated that it is equivalent to the backward/forward power flow in matrix form. The main advantage of both power flow approaches is that they can work with radial and meshed distribution networks. Additionally, they do not require inverting matrices at each iteration, making them efficient in terms of computational processing times requirements. All the simulations are carried out in the MATLAB programming environment.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-23T21:28:10Z
dc.date.available.none.fl_str_mv 2022-09-23T21:28:10Z
dc.date.issued.none.fl_str_mv 2022-07-02
dc.date.submitted.none.fl_str_mv 2022-09-23
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.es_CO.fl_str_mv Montoya Giraldo, Oscar & Gil González, Walter & Garces, Alejandro. (2022). A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electric Power Systems Research. 211. 108264. 10.1016/j.epsr.2022.108264.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11116
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.epsr.2022.108264
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya Giraldo, Oscar & Gil González, Walter & Garces, Alejandro. (2022). A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electric Power Systems Research. 211. 108264. 10.1016/j.epsr.2022.108264.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11116
https://doi.org/10.1016/j.epsr.2022.108264
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 Páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Elsevier - Electric Power Systems Research Vol. 211 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/1/1-s2.0-S0378779622004643-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/4/1-s2.0-S0378779622004643-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/5/1-s2.0-S0378779622004643-main.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
1e18f592d3f28078a1c700f366d34a31
ae8fa53dc2f16705696c7d5af7f2213d
39efff8d172f3018890bcabf96376137
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021746636881920
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter31e41d1d-191e-4bdd-b623-55ce85a65b9cGarcés, Alejandro1f6fb709-fba4-4fc8-9381-be1f0ca81b822022-09-23T21:28:10Z2022-09-23T21:28:10Z2022-07-022022-09-23Montoya Giraldo, Oscar & Gil González, Walter & Garces, Alejandro. (2022). A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electric Power Systems Research. 211. 108264. 10.1016/j.epsr.2022.108264.https://hdl.handle.net/20.500.12585/11116https://doi.org/10.1016/j.epsr.2022.108264Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system is solidly grounded at each load point and (ii) when the neutral terminal is only grounded at the substation bus. The problem is solved using the successive approximation power flow method. Numerical results in two test feeders composed of 4 and 25 nodes demonstrate that the successive approximation power flow approach is adequate to solve the problem. It is also demonstrated that it is equivalent to the backward/forward power flow in matrix form. The main advantage of both power flow approaches is that they can work with radial and meshed distribution networks. Additionally, they do not require inverting matrices at each iteration, making them efficient in terms of computational processing times requirements. All the simulations are carried out in the MATLAB programming environment.10 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Elsevier - Electric Power Systems Research Vol. 211 (2022)A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Bipolar DC networksAsymmetric constant power loadsSuccessive approximations power flow methodEffect of the neutral conductorLEMBCartagena de IndiasGarces A., Azhmyakov V. Application of the nested convex programming to the optimal power flow in MT-HVDC grids IFAC-PapersOnLine, 53 (2) (2020), pp. 13173-13177, 10.1016/j.ifacol.2020.12.128Montoya O.D., Gil-González W. Stationary-state analysis of low-voltage DC grids Modeling, Operation, and Analysis of DC Grids, Elsevier (2021), pp. 195-213Agarwal S., Panigrahi C.K., Sahoo A., Mishra S. A novel study on bipolar high voltage direct current transmission lines protection schemes Int. J. Electr. Comput. Eng. (IJECE), 8 (4) (2018), p. 1977, 10.11591/ijece.v8i4.pp1977-1984Garces A., Montoya O.D., Gil-Gonzalez W. Power flow in bipolar DC distribution networks considering current limits IEEE Trans. Power Syst. (2022), pp. 1-4, 10.1109/tpwrs.2022.3181851Mackay L., Blij N.H.v.d., Ramirez-Elizondo L., Bauer P. Toward the universal DC distribution system Electr. Power Compon. Syst., 45 (10) (2017), pp. 1032-1042Grisales-Noreña L.F., Ramos-Paja C.A., Gonzalez-Montoya D., Alcalá G., Hernandez-Escobedo Q. Energy management in PV based microgrids designed for the universidad nacional de Colombia Sustainability, 12 (3) (2020), p. 1219, 10.3390/su12031219Zhu H., Zhu M., Zhang J., Cai X., Dai N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), IEEE (2016), 10.1109/ipemc.2016.7512892Mackay L., Hailu T.G., Mouli G.C., Ramírez-Elizondo L., Ferreira J., Bauer P. From dc nano-and microgrids towards the universal dc distribution system-a plea to think further into the future 2015 IEEE Power & Energy Society General Meeting, IEEE (2015), pp. 1-5Rivera S., Lizana R., Kouro S., Dragičević T., Wu B. Bipolar dc power conversion: State-of-the-art and emerging technologies IEEE J. Emerg. Sel. Top. Power Electron., 9 (2) (2020), pp. 1192-1204Medina-Quesada A., Montoya O.D., Hernández J.C. Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals Sensors, 22 (8) (2022), pp. 1-13, 10.3390/s22082914Garces A. Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids Elsevier (2021)Chew B.S.H., Xu Y., Wu Q. Voltage balancing for bipolar DC distribution grids: A power flow based binary integer multi-objective optimization approach IEEE Trans. Power Syst., 34 (1) (2018), pp. 28-39Mackay L., Guarnotta R., Dimou A., Morales-Espana G., Ramirez-Elizondo L., Bauer P. Optimal power flow for unbalanced bipolar DC distribution grids IEEE Access, 6 (2018), pp. 5199-5207, 10.1109/access.2018.2789522Beerten J., Cole S., Belmans R. A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems IEEE PES General Meeting, IEEE (2010), pp. 1-7Wiget R., Andersson G. Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters 2012 IEEE Power and Energy Society General Meeting, IEEE (2012), pp. 1-8Rimez J., Belmans R. A combined AC/DC optimal power flow algorithm for meshed AC and DC networks linked by VSC converters Int. Trans. Electr. Energy Syst., 25 (10) (2015), pp. 2024-2035Kim J., Cho J., Kim H., Cho Y., Lee H. Power flow calculation method of DC distribution network for actual power system KEPCO J. Electr. Power Energy, 6 (4) (2020), pp. 419-425,Lee J.-O., Kim Y.-S., Moon S.-I. Current injection power flow analysis and optimal generation dispatch for bipolar DC microgrids IEEE Trans. Smart Grid, 12 (3) (2021), pp. 1918-1928,Montoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454, 10.1016/j.epsr.2020.106454Herrera-Briñez M.C., Montoya O.D., Alvarado-Barrios L., Chamorro H.R. The equivalence between successive approximations and matricial load flow formulations Appl. Sci., 11 (7) (2021), p. 2905, 10.3390/app11072905Ouali S., Cherkaoui A. An improved backward/forward sweep power flow method based on a new network information organization for radial distribution systems J. Electr. Comput. Eng., 2020 (2020), pp. 1-11, 10.1155/2020/5643410Lee J.-O., Kim Y.-S., Jeon J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method Int. J. Electr. Power Energy Syst., 142 (2022), Article 108357, 10.1016/j.ijepes.2022.108357Garces A. Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res., 151 (2017), pp. 149-153, 10.1016/j.epsr.2017.05.031Montoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61, 10.3390/computation9060061Loomis L.H., Sternberg S. Advanced Calculus World Scientific (2014)Shivakumar P.N., Williams J.J., Ye Q., Marinov C.A. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics SIAM J. Matrix Anal. Appl., 17 (2) (1996), pp. 298-312, 10.1137/S0895479894276370Shen T., Li Y., Xiang J. A graph-based power flow method for balanced distribution systems Energies, 11 (3) (2018), p. 511, 10.3390/en11030511Marini A., Mortazavi S., Piegari L., Ghazizadeh M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations Electr. Power Syst. Res., 170 (2019), pp. 229-243, 10.1016/j.epsr.2018.12.026Garces A. On the convergence of Newton’s method in power flow studies for DC microgrids IEEE Trans. Power Syst., 33 (5) (2018), pp. 5770-5777, 10.1109/tpwrs.2018.2820430http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL1-s2.0-S0378779622004643-main.pdf1-s2.0-S0378779622004643-main.pdfapplication/pdf755299https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/1/1-s2.0-S0378779622004643-main.pdf1e18f592d3f28078a1c700f366d34a31MD51TEXT1-s2.0-S0378779622004643-main.pdf.txt1-s2.0-S0378779622004643-main.pdf.txtExtracted texttext/plain55080https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/4/1-s2.0-S0378779622004643-main.pdf.txtae8fa53dc2f16705696c7d5af7f2213dMD54THUMBNAIL1-s2.0-S0378779622004643-main.pdf.jpg1-s2.0-S0378779622004643-main.pdf.jpgGenerated Thumbnailimage/jpeg2792https://repositorio.utb.edu.co/bitstream/20.500.12585/11116/5/1-s2.0-S0378779622004643-main.pdf.jpg39efff8d172f3018890bcabf96376137MD5520.500.12585/11116oai:repositorio.utb.edu.co:20.500.12585/111162022-09-24 00:18:42.112Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=