Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique

Fatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is prop...

Full description

Autores:
Velilla-Díaz, Wilmer
Guillén-Rujano, Renny
Pérez-Ruiz, José David
López de Lacalle, Luis Norberto,
Palencia, Argemiro
Maury, Heriberto
Zambrano, Habib R.
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12602
Acceso en línea:
https://hdl.handle.net/20.500.12585/12602
Palabra clave:
Fatigue crack growth;
Stop-holes
Fracture mechanics
Mathematical model
crack arrest
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_6f29d6eabe08831739a13c9d1d236a36
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12602
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
spellingShingle Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
Fatigue crack growth;
Stop-holes
Fracture mechanics
Mathematical model
crack arrest
LEMB
title_short Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_full Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_fullStr Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_full_unstemmed Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_sort Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
dc.creator.fl_str_mv Velilla-Díaz, Wilmer
Guillén-Rujano, Renny
Pérez-Ruiz, José David
López de Lacalle, Luis Norberto,
Palencia, Argemiro
Maury, Heriberto
Zambrano, Habib R.
dc.contributor.author.none.fl_str_mv Velilla-Díaz, Wilmer
Guillén-Rujano, Renny
Pérez-Ruiz, José David
López de Lacalle, Luis Norberto,
Palencia, Argemiro
Maury, Heriberto
Zambrano, Habib R.
dc.subject.keywords.spa.fl_str_mv Fatigue crack growth;
Stop-holes
Fracture mechanics
Mathematical model
crack arrest
topic Fatigue crack growth;
Stop-holes
Fracture mechanics
Mathematical model
crack arrest
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Fatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-01T20:28:01Z
dc.date.available.none.fl_str_mv 2024-02-01T20:28:01Z
dc.date.issued.none.fl_str_mv 2024-02-01
dc.date.submitted.none.fl_str_mv 2024-02-01
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Velilla-Díaz, Wilmer, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, and Habib R. Zambrano. 2024. "Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique" Metals 14, no. 2: 182. https://doi.org/10.3390/met14020182
dc.identifier.issn.none.fl_str_mv 2075-4701
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12602
dc.identifier.doi.none.fl_str_mv 10.3390/ met14020182
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Velilla-Díaz, Wilmer, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, and Habib R. Zambrano. 2024. "Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique" Metals 14, no. 2: 182. https://doi.org/10.3390/met14020182
2075-4701
10.3390/ met14020182
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12602
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 16 Paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.source.spa.fl_str_mv Metals
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/1/metals%20publicado.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/3/metals%20publicado.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/4/metals%20publicado.pdf.jpg
bitstream.checksum.fl_str_mv 143875910bea84dd3b085f668bda5780
e20ad307a1c5f3f25af9304a7a7c86b6
69877705b30d4d24a408eff9c7206ce4
68cd60d45f34a4d23237214bcab6f267
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397604454662144
spelling Velilla-Díaz, Wilmer0b62bcbc-7077-4361-9708-424b68c21cf7Guillén-Rujano, Rennye287fa99-eca4-44cf-a116-1c6fa5048a9cPérez-Ruiz, José David074ff7a6-8b0c-41ef-b802-d7fbc4a9dd33López de Lacalle, Luis Norberto,2f28766a-9133-403b-a787-5c8f7ec6ad3aPalencia, Argemiro5f46e66d-865c-4e7f-a342-9577ac08e875Maury, Heriberto99350ca8-61b9-4d93-a635-9aa807a0e28cZambrano, Habib R.1221da6c-35b4-4344-a3cd-837fc9874c962024-02-01T20:28:01Z2024-02-01T20:28:01Z2024-02-012024-02-01Velilla-Díaz, Wilmer, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, and Habib R. Zambrano. 2024. "Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique" Metals 14, no. 2: 182. https://doi.org/10.3390/met140201822075-4701https://hdl.handle.net/20.500.12585/1260210.3390/ met14020182Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarFatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests.16 Paginasapplication/pdfengMetalsFatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Techniqueinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Fatigue crack growth;Stop-holesFracture mechanicsMathematical modelcrack arrestLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasCampus TecnológicoIngeniería MecánicaInvestigadoresYousefi, A.; Jolaiy, S.; Hedayati, R.; Serjouei, A.; Bodaghi, M. Fatigue Life Improvement of Cracked Aluminum 6061-T6 Plates Repaired by Composite Patches. Materials 2021, 14, 1421. https://doi.org/10.3390/ma14061421.Liu, X.; Wu, J.; Xi, J.; Yu, Z. Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon- Aramid Fiber/Epoxy Sandwich Composite Patch. Materials 2019, 12, 1655. https://doi.org/10.3390/ma12101655.Aabid, A.; Hrairi, M.; Ali, J.S.M.; Sebaey, T.A. A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials 2022, 15, 3086. https://doi.org/10.3390/ma15093086.Chao Lu, Y.; Peng Yang, F.; Chen, T.; Gong, H. The retardation effect of combined application of stop-hole and overload on sheet steel. Int. J. Fatigue 2020, 132, 105414. https://doi.org/10.1016/j.ijfatigue.2019.105414.Yao, Y.; Ji, B.; Fu, Z.; Zhou, J.; Wang, Y. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges. J. Constr. Steel Res. 2019, 162, 105747. https://doi.org/10.1016/j.jcsr.2019.105747.Jiang, X.; Lv, Z.; Qiang, X.; Zhang, J. Improvement of Stop-Hole Method on Fatigue-Cracked Steel Plates by Using High-Strength Bolts and CFRP Strips. Adv. Civ. Eng. 2021, 2021, 6632212. https://doi.org/10.1155/2021/6632212.Razavi, S.M.J.; Ayatollahi, M.R.; Sommitsch, C.; Moser, C. Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique. Eng. Fract. Mech. 2017, 169, 226–237. https://doi.org/10.1016/j.engfracmech.2016.11.013.Ayatollahi, M.R.; Razavi, S.M.J.; Yahya, M.Y. Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng. Fract. Mech. 2015, 145, 115–127. https://doi.org/10.1016/j.engfracmech.2015.03.027.Deng, Q.; Yin, X.; Wang, D.; Abdel Wahab, M. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. Int. J. Fatigue 2022, 156, 106640. https://doi.org/10.1016/j.ijfatigue.2021.106640.Taghizadeh, H.; Chakherlou, T.; Ghorbani, H.; Mohammadpour, A. Prediction of fatigue life in cold expanded fastener holes subjected to bolt tightening in Al alloy 7075-T6 plate. Int. J. Mech. Sci. 2015, 90, 6–15. https://doi.org/10.1016/j.ijmecsci.2014.10.026.Takahashi, I. A simple repair method of fatigue cracks using stop-holes reinforced with wedge members: Applicability to reinitiated cracks and effects of an anti-fatigue smart paste. Weld. Int. 2020, 34, 267–287. https://doi.org/10.1080/09507116.2021.1915567.Branco, C.; Infante, V.; Baptista, R. Fatigue behaviour of welded joints with cracks, repaired by hammer peening. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 785–798. https://doi.org/10.1111/j.1460-2695.2004.00777.x.Tai, M.; Miki, C. Fatigue strength improvement by hammer peening treatment—Verification from plastic deformation, residual stress, and fatigue crack propagation rate. Weld. World 2014, 58, 307–318. https://doi.org/10.1007/s40194-014-0115-1.Tai, M.; Miki, C. Improvement effects of fatigue strength by burr grinding and hammer peening under variable amplitude loading. Weld. World 2012, 56, 109–117. https://doi.org/10.1007/BF03321370.Baker, A.; Jones, R. Bonded Repair of Aircraft Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 7. https://doi.org/10.1007/978-94-009-2752-0_7.Marazani, T.; Madyira, D.M.; Akinlabi, E.T. Repair of cracks in metals: A review. Procedia Manuf. 2017, 8, 673–679. https://doi.org/10.1016/j.promfg.2017.02.086.Lozano, C.M.; Riveros, G.A. Effects of Adhesive Bond-Slip Behavior on the Capacity of Innovative FRP Retrofits for Fatigue and Fracture Repair of Hydraulic Steel Structures. Materials 2019, 12, 1495. https://doi.org/10.3390/ma12091495.Song, P.; Shieh, Y. Stop drilling procedure for fatigue life improvement. Int. J. Fatigue 2004, 26, 1333–1339. https://doi.org/10.1016/j.ijfatigue.2004.04.009.Wu, H.; Imad, A.; Benseddiq, N.; de Castro, J.T.P.; Meggiolaro, M.A. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method. Int. J. Fatigue 2010, 32, 670–677. https://doi.org/10.1016/j.ijfatigue.2009.09.011.Schubbe, J.J.; Bolstad, S.H.; Reyes, S. Fatigue crack growth behavior of aerospace and ship-grade aluminum repaired with composite patches in a corrosive environment. Compos. Struct. 2016, 144, 44–56. https://doi.org/10.1016/j.compstruct.2016.01.107.Errouane, H.; Sereir, Z.; Chateauneuf, A. Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension. Int. J. Adhes. Adhes. 2014, 49, 64–72. https://doi.org/10.1016/j.ijadhadh.2013.12.004.Zarrinzadeh, H.; Kabir, M.; Deylami, A. Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 2017, 133, 24–32. https://doi.org/10.1016/j.engstruct.2016.12.011.Ferdous, M.; Naka, K.; Makabe, C.; Miyazaki, T.; others. A review of simple methods for arresting crack growth. Adv. Mat. Res. 2015, 1110, 185–190. https://doi.org/10.4028/www.scientific.net/AMR.1110.185.Zarrinzadeh, H.; Kabir, M.; Deylami, A. Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading. Thin‐Walled Struct. 2017, 112, 140–148. https://doi.org/10.1016/j.tws.2016.12.023.Mohammed, S.M.K.; Bouiadjra, B.B.; Benyahia, F.; Albedah, A. Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch. Eng. Fract. Mech. 2018, 202, 147–161. https://doi.org/10.1016/j.engfracmech. 2018.09.008.Huang, C.; Chen, T.; Feng, S. Finite element analysis of fatigue crack growth in CFRP-repaired four-point bend specimens. Eng. Struct. 2019, 183, 398–407. https://doi.org/10.1016/j.engstruct.2019.01.045.Ye, H.; Wang, T.; Shuai, C.; Liu, C.; Xu, X. A novel driving force parameter ΔKeff1-αKmaxα for fatigue crack propagation in prestressed-CFRP-repaired steel structure. Compos. Struct. 2019, 214, 183–190. https://doi.org/10.1016/j.compstruct.2019.02.006.Alshoaibi, A.M.; Fageehi, Y.A. Finite Element Simulation of a Crack Growth in the Presence of a Hole in the Vicinity of the Crack Trajectory. Materials 2022, 15, 363. https://doi.org/10.3390/ma15010363.Ghfiri, R.; Shi, H.J.; Guo, R.; Mesmacque, G. Effects of expanded and non-expanded hole on the delay of arresting crack propagation for aluminum alloys. Mater. Sci. Eng A 2000, 286, 244–249. https://doi.org/10.1016/S0921-5093(00)00805-4.Domazet, Ž. Comparison of fatigue crack retardation methods. Eng. Fail. Anal. 1996, 3, 137–147. https://doi.org/10.1016/1350- 6307(96)00006-4.Moshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2021, 92, 2000242. https://doi.org/10.1002/srin.202000242.Velilla-Díaz, W.; Zambrano, H.R. Effects of Grain Boundary Misorientation Angle on the Mechanical Behavior of Al Bicrystals. Nanomaterials 2023, 13, 3031. https://doi.org/10.3390/nano13233031.Tian, L.; Cheng, Z. Fracture and Fatigue Analyses of Cracked Structures Using the Iterative Method. Geofluids 2021, 2021, 4434598. https://doi.org/10.1155/2021/4434598.Zhang, P.; Li, J.; Zhao, Y.; Li, J. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics. Sci. Rep. 2023, 13, 14567. https://doi.org/10.1038/s41598-023-41804-z.Yang, D. Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam. Sustainability 2021, 13, 1678. https://doi.org/10.3390/su13041678.Velilla-Díaz, W.; Ricardo, L.; Palencia, A.; Zambrano, H.R. Fracture toughness estimation of single-crystal aluminum at nanoscale. Nanomaterials 2021, 11, 680. https://doi.org/10.3390/nano11030680.Liu, J.; Feng, G.; Wang, J.; Ren, H.; Song, W.; Lin, P. Fatigue Life Assessment in the Typical Structure of Large Container Vessels Based on Fracture Mechanics. J. Mar. Sci. Eng. 2023, 11, 2075. https://doi.org/10.3390/jmse11112075.Leonetti, D.; Maljaars, J.; Snijder, B.; Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimation. Eng. Fract. Mech. 2021, 242, 107487. https://doi.org/10.1016/j.engfracmech.2020.107487.Attarha, M.; Sattari-Far, I. Comparison of the continuum damage and fracture mechanics in fatigue assessment of components containing residual stresses. Mech. Based Des. Struct. Mach. 2023, 1–18. https://doi.org/10.1080/15397734.2023.2255662.Velilla-Díaz, W.; Zambrano, H.R. Crack length effect on the fracture behavior of single-crystals and bi-crystals of aluminum. Nanomaterials 2021, 11, 2783. https://doi.org/10.3390/nano11112783.Alrayes, O.; Könke, C.; Ooi, E.T.; Hamdia, K.M. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials 2023, 16, 863. https://doi.org/10.3390/ma16020863.Kristensen, P.; Niordson, C.; Martínez-Pañeda, E. An assessment of phase field fracture: Crack initiation and growth. Phil. Trans. R. Soc. A 2021, 379, 20210021. https://doi.org/10.1098/rsta.2021.0021.Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/e0647-15e01.html (accessed on 29 January 2024).Paris, P.C. A rational analytic theory of fatigue. Trends Engin 1961, 13, 9–14.Wheeler, O. Spectrum loading and crack growth. Trans. of ASCE. J. Basic. Eng. 1972, 94, 181–186. https://doi.org/10.1115/1.3425362.Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017.Harter, J.A. AFGROW users guide and technical manual. Technical report, Air Force Research Lab Wright-Patterson Afb Oh Air Vehicles Directorate. Air Force Res. Lab. 1999, 10. Available online: https://apps.dtic.mil/sti/citations/ADA370431 (accessed on 29 January 2024).Irwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. 1957, 24, 361–364. https://doi.org/10.1115/1.4011547.Fett, T. Stress Intensity Factors‐T‐Stresses‐Weight Functions; Institute of Ceramics in Mechanical Engineering, University of Karlsruhe: Karlsruhe, Germany, 2008.Budynas, R.G.; Nisbett, J. Diseño en Ingeniería Mecánica de Shigley, 8th ed.; McGraw-Hill Interamericana: Mexico City, Mexico, 2008.ANSYS. Ansys User’s Manual: Theory Reference, R22; Swanson Analysis System Inc.: Houston, TX, USA, 2007.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALmetals publicado.pdfmetals publicado.pdfArtículo principalapplication/pdf2528421https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/1/metals%20publicado.pdf143875910bea84dd3b085f668bda5780MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTmetals publicado.pdf.txtmetals publicado.pdf.txtExtracted texttext/plain49685https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/3/metals%20publicado.pdf.txt69877705b30d4d24a408eff9c7206ce4MD53THUMBNAILmetals publicado.pdf.jpgmetals publicado.pdf.jpgGenerated Thumbnailimage/jpeg7959https://repositorio.utb.edu.co/bitstream/20.500.12585/12602/4/metals%20publicado.pdf.jpg68cd60d45f34a4d23237214bcab6f267MD5420.500.12585/12602oai:repositorio.utb.edu.co:20.500.12585/126022024-02-02 00:18:04.118Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=