A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems

This paper presents a generalized interconnection and damping assignment passivity-based control (IDA-PBC) for electric energy storage systems (EESS) such as: superconducting magnetic energy storage (SMES) and supercapacitor energy storage (SCES). A general framework is proposed to represent the dyn...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8889
Acceso en línea:
https://hdl.handle.net/20.500.12585/8889
Palabra clave:
Electrical energy storage systems (EESS)
Generalized mathematical model
Interconnection and damping assignment passivity-based control (IDA-PBC)
Supercapacitor energy storage (SCES)
Superconducting magnetic energy storage (SMES)
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Electric power systems
Electric power transmission networks
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Supercapacitor
Superconducting magnets
Active and Reactive Power
Electrical distribution system
Electrical energy storage systems
Interconnection and damping assignment
Passivity based control
Supercapacitor energy storages
Superconducting magnetic energy storages
Voltage source converter (VSC)
Electric power system control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6ea5b55d33c588cd7f7b02ae3567b21a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8889
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
title A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
spellingShingle A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
Electrical energy storage systems (EESS)
Generalized mathematical model
Interconnection and damping assignment passivity-based control (IDA-PBC)
Supercapacitor energy storage (SCES)
Superconducting magnetic energy storage (SMES)
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Electric power systems
Electric power transmission networks
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Supercapacitor
Superconducting magnets
Active and Reactive Power
Electrical distribution system
Electrical energy storage systems
Interconnection and damping assignment
Passivity based control
Supercapacitor energy storages
Superconducting magnetic energy storages
Voltage source converter (VSC)
Electric power system control
title_short A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
title_full A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
title_fullStr A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
title_full_unstemmed A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
title_sort A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
dc.subject.keywords.none.fl_str_mv Electrical energy storage systems (EESS)
Generalized mathematical model
Interconnection and damping assignment passivity-based control (IDA-PBC)
Supercapacitor energy storage (SCES)
Superconducting magnetic energy storage (SMES)
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Electric power systems
Electric power transmission networks
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Supercapacitor
Superconducting magnets
Active and Reactive Power
Electrical distribution system
Electrical energy storage systems
Interconnection and damping assignment
Passivity based control
Supercapacitor energy storages
Superconducting magnetic energy storages
Voltage source converter (VSC)
Electric power system control
topic Electrical energy storage systems (EESS)
Generalized mathematical model
Interconnection and damping assignment passivity-based control (IDA-PBC)
Supercapacitor energy storage (SCES)
Superconducting magnetic energy storage (SMES)
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Electric power systems
Electric power transmission networks
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Supercapacitor
Superconducting magnets
Active and Reactive Power
Electrical distribution system
Electrical energy storage systems
Interconnection and damping assignment
Passivity based control
Supercapacitor energy storages
Superconducting magnetic energy storages
Voltage source converter (VSC)
Electric power system control
description This paper presents a generalized interconnection and damping assignment passivity-based control (IDA-PBC) for electric energy storage systems (EESS) such as: superconducting magnetic energy storage (SMES) and supercapacitor energy storage (SCES). A general framework is proposed to represent the dynamical behavior of EESS interconnected to the electrical distribution system through forced commutated power electronic converters. A voltage source converter (VSC) and a pulse-width modulated current source converter (PWM-CSC) are used to integrate SCES and SMES systems to the electrical power systems respectively. The proposed control strategy allows active and reactive power interchange between the EESS and electric distribution grids independently, guaranteeing globally asymptotically convergence in the sense of Lyapunov via Hamiltonian formulation. Simulation results show the effectiveness and robustness of the generalized IDA-PBC to operate EESS as active and reactive power compensator in order to improve operative conditions in power distribution grids under balanced and unbalanced conditions. © 2018 Elsevier Ltd
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:34Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:34Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Energy Storage; Vol. 16, pp. 259-268
dc.identifier.issn.none.fl_str_mv 2352152X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8889
dc.identifier.doi.none.fl_str_mv 10.1016/j.est.2018.01.018
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
36449223500
55989699400
identifier_str_mv Journal of Energy Storage; Vol. 16, pp. 259-268
2352152X
10.1016/j.est.2018.01.018
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
36449223500
55989699400
url https://hdl.handle.net/20.500.12585/8889
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211114&doi=10.1016%2fj.est.2018.01.018&partnerID=40&md5=ee7eae36f42153dad2e2415c9ba6c28e
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8889/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397621977415680
spelling 2020-03-26T16:32:34Z2020-03-26T16:32:34Z2018Journal of Energy Storage; Vol. 16, pp. 259-2682352152Xhttps://hdl.handle.net/20.500.12585/888910.1016/j.est.2018.01.018Universidad Tecnológica de BolívarRepositorio UTB569195641003644922350055989699400This paper presents a generalized interconnection and damping assignment passivity-based control (IDA-PBC) for electric energy storage systems (EESS) such as: superconducting magnetic energy storage (SMES) and supercapacitor energy storage (SCES). A general framework is proposed to represent the dynamical behavior of EESS interconnected to the electrical distribution system through forced commutated power electronic converters. A voltage source converter (VSC) and a pulse-width modulated current source converter (PWM-CSC) are used to integrate SCES and SMES systems to the electrical power systems respectively. The proposed control strategy allows active and reactive power interchange between the EESS and electric distribution grids independently, guaranteeing globally asymptotically convergence in the sense of Lyapunov via Hamiltonian formulation. Simulation results show the effectiveness and robustness of the generalized IDA-PBC to operate EESS as active and reactive power compensator in order to improve operative conditions in power distribution grids under balanced and unbalanced conditions. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentThe authors want to thank for the support of the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering at the Technological University of Pereira.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211114&doi=10.1016%2fj.est.2018.01.018&partnerID=40&md5=ee7eae36f42153dad2e2415c9ba6c28eA generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Electrical energy storage systems (EESS)Generalized mathematical modelInterconnection and damping assignment passivity-based control (IDA-PBC)Supercapacitor energy storage (SCES)Superconducting magnetic energy storage (SMES)DampingElectric energy storageElectric power distributionElectric power system interconnectionElectric power systemsElectric power transmission networksMagnetic storagePower convertersPulse width modulationReactive powerSupercapacitorSuperconducting magnetsActive and Reactive PowerElectrical distribution systemElectrical energy storage systemsInterconnection and damping assignmentPassivity based controlSupercapacitor energy storagesSuperconducting magnetic energy storagesVoltage source converter (VSC)Electric power system controlMontoya O.D.Garcés, AlejandroEspinosa-Pérez, G.Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Palizban, O., Kauhaniemi, K., Energy storage systems in modern grids-matrix of technologies and applications (2016) J. Energy Storage, 6, pp. 248-259. , http://www.sciencedirect.com/science/article/pii/S2352152X1630010XLuo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl. Energy, 137, pp. 511-536Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Xiao, X.Y., Liu, Y., Jin, J.X., Li, C.S., Xu, F.W., HTS applied to power system: benefits and potential analysis for energy conservation and emission reduction (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-9Jing, W., Lai, C.H., Wong, S.H.W., Wong, M.L.D., Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: a review (2016) IET Renew. Power Gener., 11 (4), pp. 461-469Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Ortega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst., 32 (3), pp. 2445-2454Smith, S.C., Sen, P.K., Kroposki, B., Advancement of energy storage devices and applications in electrical power system (2008) 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-8Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102Ren, G., Ma, G., Cong, N., Review of electrical energy storage system for vehicular applications (2015) Renew. Sustain. Energy Rev., 41, pp. 225-236Bensmaine, F., Bachelier, O., Tnani, S., Champenois, G., Mouni, E., LMI approach of state-feedback controller design for a statcom-supercapacitors energy storage system associated with a wind generation (2015) Energy Convers. Manag., 96, pp. 463-472DÅolu, M.K., Arsoy, A.B., Transient modeling and analysis of a DFIG based wind farm with supercapacitor energy storage (2016) Int. J. Electric. Power Energy Syst., 78, pp. 414-421Farhadi, M., Mohammed, O., Energy storage technologies for high-power applications (2016) IEEE Trans. Ind. Appl., 52 (3), pp. 1953-1961Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Planas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749Huang, S., Pham, D.C., Huang, K., Cheng, S., Space vector PWM techniques for current and voltage source converters: a short review (2012) 2012 15th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6Marzouki, A., Hamouda, M., Fnaiech, F., A review of PWM voltage source converters based industrial applications (2015) 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), pp. 1-6Serra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Xue, Y., Zhang, X.P., Reactive power and ac voltage control of LCC HVDC system with controllable capacitors (2017) IEEE Trans. Power Syst., 32 (1), pp. 753-764Giraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453Espinoza, J.R., Joos, G., State variable decoupling and power flow control in PWM current-source rectifiers (1998) IEEE Trans. Ind. Electron., 45 (1), pp. 78-87Ali, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626. , Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES14 - EUMISD)Elsisi, M., Soliman, M., Aboelela, M., Mansour, W., Optimal design of model predictive control with superconducting magnetic energy storage for load frequency control of nonlinear hydrothermal power system using bat inspired algorithm (2017) J. Energy Storage, 12, pp. 311-318. , http://www.sciencedirect.com/science/article/pii/S2352152X16303358Shi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95Gil-González, W., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171. , http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4813Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238Ramírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111Blasko, V., Kaura, V., A new mathematical model and control of a three-phase ac–dc voltage source converter (1997) IEEE Trans. Power Electron., 12 (1), pp. 116-123Perko, L., Differential Equations and Dynamical Systems, Ser. Texts in Applied Mathematics (2013), https://books.google.com.co/books?id=VFnSBwAAQBAJ, Springer New YorkKhalil, H., Nonlinear Systems, Ser. Always Learning (2013), https://books.google.com.co/books?id=VZ72nQEACAAJ, Pearson Education, LimitedCastaños, F., Gromov, D., Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints (2016) Syst. Control Lett., 94, pp. 11-18Nunna, K., Sassano, M., Astolfi, A., Constructive interconnection and damping assignment for port-controlled Hamiltonian systems (2015) IEEE Trans. Autom. Control, 60 (9), pp. 2350-2361Martínez-Pérez, I., Espinosa-Perez, G., Sandoval-Rodríguez, G., Dòria-Cerezo, A., IDA passivity-based control of single phase back-to-back converters (2008) IEEE Int. Symp. Ind. Electron., (2), pp. 74-79Chapman, S., Electric Machinery Fundamentals, Ser. McGraw-Hill Series in Electrical and Computer Engineering (2005), McGraw-Hill Companies, Incorporatedhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8889/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8889oai:repositorio.utb.edu.co:20.500.12585/88892023-05-26 09:51:23.48Repositorio Institucional UTBrepositorioutb@utb.edu.co