On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor'...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8851
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8851
- Palabra clave:
- Alternating-current power grids
Constant-power loads
Direct-current power grids
Linear power flow approximation
Electric impedance measurement
Electric load flow
Iterative methods
MATLAB
Numerical methods
Alternating current
Constant power load
Direct current power
Linear representation
Numerical implementation
Power flows
Programming environment
Series expansion methods
Electric power transmission networks
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6e6bf5e4e40a57e6b15c868fae68f456 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8851 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
title |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
spellingShingle |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs Alternating-current power grids Constant-power loads Direct-current power grids Linear power flow approximation Electric impedance measurement Electric load flow Iterative methods MATLAB Numerical methods Alternating current Constant power load Direct current power Linear representation Numerical implementation Power flows Programming environment Series expansion methods Electric power transmission networks |
title_short |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
title_full |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
title_fullStr |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
title_full_unstemmed |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
title_sort |
On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs |
dc.subject.keywords.none.fl_str_mv |
Alternating-current power grids Constant-power loads Direct-current power grids Linear power flow approximation Electric impedance measurement Electric load flow Iterative methods MATLAB Numerical methods Alternating current Constant power load Direct current power Linear representation Numerical implementation Power flows Programming environment Series expansion methods Electric power transmission networks |
topic |
Alternating-current power grids Constant-power loads Direct-current power grids Linear power flow approximation Electric impedance measurement Electric load flow Iterative methods MATLAB Numerical methods Alternating current Constant power load Direct current power Linear representation Numerical implementation Power flows Programming environment Series expansion methods Electric power transmission networks |
description |
This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor's or Laurent's series expansion methods are not required to obtain an equivalent linear power flow model. The proposed linear method allows us to achieve a high quality approximation of the power flow modeling without iterative procedures. Our simulation results show the accurate estimation of the voltage profile in distribution networks by the proposed linear approach in comparison to existing methods in specialized literature for ac and dc networks, including linear estimators or classical numerical methods, such as Gauss-Seidel and Newton-Raphson approaches. Numerical implementation of those approaches is carried out in the MATLAB 2017a programming environment. © 2004-2012 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:29Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:29Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-2036 |
dc.identifier.issn.none.fl_str_mv |
15497747 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8851 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TCSII.2019.2894149 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 |
identifier_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-2036 15497747 10.1109/TCSII.2019.2894149 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 |
url |
https://hdl.handle.net/20.500.12585/8851 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076688503&doi=10.1109%2fTCSII.2019.2894149&partnerID=40&md5=47a29896339c61d5fd415c8de134996f |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8851/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021780756496384 |
spelling |
2020-03-26T16:32:29Z2020-03-26T16:32:29Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-203615497747https://hdl.handle.net/20.500.12585/885110.1109/TCSII.2019.2894149Universidad Tecnológica de BolívarRepositorio UTB56919564100This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor's or Laurent's series expansion methods are not required to obtain an equivalent linear power flow model. The proposed linear method allows us to achieve a high quality approximation of the power flow modeling without iterative procedures. Our simulation results show the accurate estimation of the voltage profile in distribution networks by the proposed linear approach in comparison to existing methods in specialized literature for ac and dc networks, including linear estimators or classical numerical methods, such as Gauss-Seidel and Newton-Raphson approaches. Numerical implementation of those approaches is carried out in the MATLAB 2017a programming environment. © 2004-2012 IEEE.Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITIManuscript received November 30, 2018; accepted January 16, 2019. Date of publication January 21, 2019; date of current version December 6, 2019. This work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020. This brief was recommended by Associate Editor Z. Galias.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076688503&doi=10.1109%2fTCSII.2019.2894149&partnerID=40&md5=47a29896339c61d5fd415c8de134996fOn Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Alternating-current power gridsConstant-power loadsDirect-current power gridsLinear power flow approximationElectric impedance measurementElectric load flowIterative methodsMATLABNumerical methodsAlternating currentConstant power loadDirect current powerLinear representationNumerical implementationPower flowsProgramming environmentSeries expansion methodsElectric power transmission networksMontoya Giraldo O.D.Simpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for lowvoltage DC power grids (2018) Elect. Power Syst. Res., 163, pp. 375-381. , OctGarces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31 (1), pp. 827-828. , JanMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Elect. Power Syst. Res., 151, pp. 149-153. , OctLiu, B., Li, Z., Chen, X., Huang, Y., Liu, X., Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (3), pp. 346-350. , MarGarcés, A., On the convergence of Newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , SepChang, G.W., Chu, S.Y., Wang, H.L., An improved backward/forward sweep load flow algorithm for radial distribution systems (2007) IEEE Trans. Power Syst., 22 (2), pp. 882-884. , MaySur, U., Sarkar, G., A sufficient condition for multiple load flow solutions existence in three phase unbalanced active distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (6), pp. 784-788. , JunLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , SepMolzahn, D.K., Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (5), pp. 672-676. , MayBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , FebSchiffer, J., Seel, T., Raisch, J., Sezi, T., Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control (2016) IEEE Trans. Control Syst. Technol., 24 (1), pp. 96-109. , JanSanchez, S., Ortega, R., Griñó, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation IEEE Trans. Circuits Syst. II, Exp. Briefs, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609, to be publishedNordman, B., Christensen, K., DC local power distribution: Technology, deployment, and pathways to success (2016) IEEE Electrific. Mag., 4 (2), pp. 29-36. , JunLi, Z., Yu, J., Wu, Q.H., Approximate linear power flow using logarithmic transform of voltage magnitudes with reactive power and transmission loss consideration (2018) IEEE Trans. Power Syst., 33 (4), pp. 4593-4603. , JulFletcher, J.R.E., Fernando, T.L., Iu, H.H.-C., Reynolds, M., Fani, S., Spatial optimization for the planning of sparse power distribution networks (2018) IEEE Trans. Power Syst., 33 (6), pp. 6686-6695. , Novhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8851/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8851oai:repositorio.utb.edu.co:20.500.12585/88512021-02-02 14:29:25.746Repositorio Institucional UTBrepositorioutb@utb.edu.co |