On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs

This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor'...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8851
Acceso en línea:
https://hdl.handle.net/20.500.12585/8851
Palabra clave:
Alternating-current power grids
Constant-power loads
Direct-current power grids
Linear power flow approximation
Electric impedance measurement
Electric load flow
Iterative methods
MATLAB
Numerical methods
Alternating current
Constant power load
Direct current power
Linear representation
Numerical implementation
Power flows
Programming environment
Series expansion methods
Electric power transmission networks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6e6bf5e4e40a57e6b15c868fae68f456
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8851
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
title On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
spellingShingle On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
Alternating-current power grids
Constant-power loads
Direct-current power grids
Linear power flow approximation
Electric impedance measurement
Electric load flow
Iterative methods
MATLAB
Numerical methods
Alternating current
Constant power load
Direct current power
Linear representation
Numerical implementation
Power flows
Programming environment
Series expansion methods
Electric power transmission networks
title_short On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
title_full On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
title_fullStr On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
title_full_unstemmed On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
title_sort On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs
dc.subject.keywords.none.fl_str_mv Alternating-current power grids
Constant-power loads
Direct-current power grids
Linear power flow approximation
Electric impedance measurement
Electric load flow
Iterative methods
MATLAB
Numerical methods
Alternating current
Constant power load
Direct current power
Linear representation
Numerical implementation
Power flows
Programming environment
Series expansion methods
Electric power transmission networks
topic Alternating-current power grids
Constant-power loads
Direct-current power grids
Linear power flow approximation
Electric impedance measurement
Electric load flow
Iterative methods
MATLAB
Numerical methods
Alternating current
Constant power load
Direct current power
Linear representation
Numerical implementation
Power flows
Programming environment
Series expansion methods
Electric power transmission networks
description This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor's or Laurent's series expansion methods are not required to obtain an equivalent linear power flow model. The proposed linear method allows us to achieve a high quality approximation of the power flow modeling without iterative procedures. Our simulation results show the accurate estimation of the voltage profile in distribution networks by the proposed linear approach in comparison to existing methods in specialized literature for ac and dc networks, including linear estimators or classical numerical methods, such as Gauss-Seidel and Newton-Raphson approaches. Numerical implementation of those approaches is carried out in the MATLAB 2017a programming environment. © 2004-2012 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:29Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:29Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-2036
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8851
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2019.2894149
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-2036
15497747
10.1109/TCSII.2019.2894149
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
url https://hdl.handle.net/20.500.12585/8851
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076688503&doi=10.1109%2fTCSII.2019.2894149&partnerID=40&md5=47a29896339c61d5fd415c8de134996f
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8851/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021780756496384
spelling 2020-03-26T16:32:29Z2020-03-26T16:32:29Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2032-203615497747https://hdl.handle.net/20.500.12585/885110.1109/TCSII.2019.2894149Universidad Tecnológica de BolívarRepositorio UTB56919564100This express brief presents an approximation of the power flow problem for alternating-current (ac) and direct-current (dc) distribution networks by using a linear representation of the hyperbolic constraints i=p/v ↔ II∗ = SV related to the power balance at each constant power load node. Taylor's or Laurent's series expansion methods are not required to obtain an equivalent linear power flow model. The proposed linear method allows us to achieve a high quality approximation of the power flow modeling without iterative procedures. Our simulation results show the accurate estimation of the voltage profile in distribution networks by the proposed linear approach in comparison to existing methods in specialized literature for ac and dc networks, including linear estimators or classical numerical methods, such as Gauss-Seidel and Newton-Raphson approaches. Numerical implementation of those approaches is carried out in the MATLAB 2017a programming environment. © 2004-2012 IEEE.Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITIManuscript received November 30, 2018; accepted January 16, 2019. Date of publication January 21, 2019; date of current version December 6, 2019. This work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020. This brief was recommended by Associate Editor Z. Galias.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076688503&doi=10.1109%2fTCSII.2019.2894149&partnerID=40&md5=47a29896339c61d5fd415c8de134996fOn Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Alternating-current power gridsConstant-power loadsDirect-current power gridsLinear power flow approximationElectric impedance measurementElectric load flowIterative methodsMATLABNumerical methodsAlternating currentConstant power loadDirect current powerLinear representationNumerical implementationPower flowsProgramming environmentSeries expansion methodsElectric power transmission networksMontoya Giraldo O.D.Simpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for lowvoltage DC power grids (2018) Elect. Power Syst. Res., 163, pp. 375-381. , OctGarces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31 (1), pp. 827-828. , JanMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Elect. Power Syst. Res., 151, pp. 149-153. , OctLiu, B., Li, Z., Chen, X., Huang, Y., Liu, X., Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (3), pp. 346-350. , MarGarcés, A., On the convergence of Newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , SepChang, G.W., Chu, S.Y., Wang, H.L., An improved backward/forward sweep load flow algorithm for radial distribution systems (2007) IEEE Trans. Power Syst., 22 (2), pp. 882-884. , MaySur, U., Sarkar, G., A sufficient condition for multiple load flow solutions existence in three phase unbalanced active distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (6), pp. 784-788. , JunLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , SepMolzahn, D.K., Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (5), pp. 672-676. , MayBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , FebSchiffer, J., Seel, T., Raisch, J., Sezi, T., Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control (2016) IEEE Trans. Control Syst. Technol., 24 (1), pp. 96-109. , JanSanchez, S., Ortega, R., Griñó, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation IEEE Trans. Circuits Syst. II, Exp. Briefs, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609, to be publishedNordman, B., Christensen, K., DC local power distribution: Technology, deployment, and pathways to success (2016) IEEE Electrific. Mag., 4 (2), pp. 29-36. , JunLi, Z., Yu, J., Wu, Q.H., Approximate linear power flow using logarithmic transform of voltage magnitudes with reactive power and transmission loss consideration (2018) IEEE Trans. Power Syst., 33 (4), pp. 4593-4603. , JulFletcher, J.R.E., Fernando, T.L., Iu, H.H.-C., Reynolds, M., Fani, S., Spatial optimization for the planning of sparse power distribution networks (2018) IEEE Trans. Power Syst., 33 (6), pp. 6686-6695. , Novhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8851/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8851oai:repositorio.utb.edu.co:20.500.12585/88512021-02-02 14:29:25.746Repositorio Institucional UTBrepositorioutb@utb.edu.co