Convergence analysis of the triangular-based power flow method for AC distribution grids
This paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix cal...
- Autores:
-
Herrera, María Camila
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Grisales-Noreña, Luis Fernando
Giral-Ramírez, Diego Armando
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10705
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10705
- Palabra clave:
- Banach fixed-point theorem
Convergence analysis
Electric distribution networks
Triangular-based power flow method
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6de55283e3254c9fb799cce3c180de4b |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10705 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
title |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
spellingShingle |
Convergence analysis of the triangular-based power flow method for AC distribution grids Banach fixed-point theorem Convergence analysis Electric distribution networks Triangular-based power flow method LEMB |
title_short |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
title_full |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
title_fullStr |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
title_full_unstemmed |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
title_sort |
Convergence analysis of the triangular-based power flow method for AC distribution grids |
dc.creator.fl_str_mv |
Herrera, María Camila Montoya, Oscar Danilo Molina-Cabrera, Alexander Grisales-Noreña, Luis Fernando Giral-Ramírez, Diego Armando |
dc.contributor.author.none.fl_str_mv |
Herrera, María Camila Montoya, Oscar Danilo Molina-Cabrera, Alexander Grisales-Noreña, Luis Fernando Giral-Ramírez, Diego Armando |
dc.subject.keywords.spa.fl_str_mv |
Banach fixed-point theorem Convergence analysis Electric distribution networks Triangular-based power flow method |
topic |
Banach fixed-point theorem Convergence analysis Electric distribution networks Triangular-based power flow method LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix calculations. The convergence analysis of this iter ative formula is carried out by applying the Banach fixed-point theorem (BFPT), which allows demonstrating that under an adequate voltage profile the triangular-based PF always converges. Numerical validations are made, on the well-known 33 and 69 dis tribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward PF methods are considered for the sake of comparison. All the simulations are carried out in MATLAB software. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-06-30 |
dc.date.accessioned.none.fl_str_mv |
2022-07-08T13:53:44Z |
dc.date.available.none.fl_str_mv |
2022-07-08T13:53:44Z |
dc.date.submitted.none.fl_str_mv |
2022-07-07 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Herrera, Maria & Montoya Giraldo, Oscar & Molina-Cabrera, Alexander & Grisales-Noreña, Luis & Giral-Ramirez, Diego. (2022). Convergence analysis of the triangular-based power flow method for AC distribution grids. International Journal of Electrical and Computer Engineering (IJECE). 12. 41. 10.11591/ijece.v12i1.pp41-49. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10705 |
dc.identifier.doi.none.fl_str_mv |
10.11591/ijece.v12i1.pp41-49 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Herrera, Maria & Montoya Giraldo, Oscar & Molina-Cabrera, Alexander & Grisales-Noreña, Luis & Giral-Ramirez, Diego. (2022). Convergence analysis of the triangular-based power flow method for AC distribution grids. International Journal of Electrical and Computer Engineering (IJECE). 12. 41. 10.11591/ijece.v12i1.pp41-49. 10.11591/ijece.v12i1.pp41-49 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10705 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
International Journal of Electrical and Computer Engineering (IJECE) - Vol. 12, No 1 (2022) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/1/25082-49641-1-PB.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/4/25082-49641-1-PB.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/5/25082-49641-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
c02ebc7f56eb9fded97f4e95b47deb77 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 1dcc38b90ac6f12bd7297a237cebfc87 fd079632d314429654d1fc5966af8fa2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021650384945152 |
spelling |
Herrera, María Camila393b8ac2-a884-4d22-b4cb-fbaa5e97005eMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba39849Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f52022-07-08T13:53:44Z2022-07-08T13:53:44Z2021-06-302022-07-07Herrera, Maria & Montoya Giraldo, Oscar & Molina-Cabrera, Alexander & Grisales-Noreña, Luis & Giral-Ramirez, Diego. (2022). Convergence analysis of the triangular-based power flow method for AC distribution grids. International Journal of Electrical and Computer Engineering (IJECE). 12. 41. 10.11591/ijece.v12i1.pp41-49.https://hdl.handle.net/20.500.12585/1070510.11591/ijece.v12i1.pp41-49Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix calculations. The convergence analysis of this iter ative formula is carried out by applying the Banach fixed-point theorem (BFPT), which allows demonstrating that under an adequate voltage profile the triangular-based PF always converges. Numerical validations are made, on the well-known 33 and 69 dis tribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward PF methods are considered for the sake of comparison. All the simulations are carried out in MATLAB software.9 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineering (IJECE) - Vol. 12, No 1 (2022)Convergence analysis of the triangular-based power flow method for AC distribution gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Banach fixed-point theoremConvergence analysisElectric distribution networksTriangular-based power flow methodLEMBCartagena de IndiasR. Poudineh, D. Peng, and S. Mirnezami, “Electricity networks,” Oxford Institute for Energy Studies, techreport, Dec. 2017.M. S. Rawat and S. Vadhera, “Probabilistic approach to determine penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index,” Arabian Journal for Science and Engineering, vol. 45, no. 3, pp. 1473–1498, jul 2019, doi: 10.1007/s13369-019-04023-1.O. D. Montoya, W. Gil-Gonzalez, and D. A. Giral, “On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence,” Applied Sciences, vol. 10, no. 17, Aug. 2020, Art. No. 5802, doi: 10.3390/app10175802.J. A. D. Massignan, B. R. Pereira, and J. B. A. London, “Load flow calculation with voltage regulators Bidirectional Mode and Distributed Generation,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 1576-1577, 2016, doi: 10.1109/TPWRS.2016.2576679.K. Balamurugan and D. Srinivasan, “Review of power flow studies on distribution network with distributed generation,” IEEE Ninth Int. Conf. on Power Electro. and Drive Sys., Dec. 2011, doi: 10.1109/PEDS.2011.614728.R. Rajaram, K. S. Kumar, and N. Rajasekar, “Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with distributed generation (DG),” Energy Reports, vol. 1, pp. 116–122, Nov. 2015, doi: 10.1016/j.egyr.2015.03.002M. W. Saddique, S. S. Haroon, S. Amin, A. R. Bhatti, I. A. Sajjad, and R. Liaqat, “Optimal placement and sizing of shunt capacitors in radial distribution system using polar bear optimization algorithm,” Arabian Journal for Science and Engineering, vol. 46, pp. 873-899, Jul. 2020, doi: 10.1007/s13369-020-04747-5.M. E. Nassar and M. Salama, “A novel branch-based power flow algorithm for islanded AC microgrids,” Electric Power Systems Research, vol. 146, pp. 51–62, May. 2017, doi: 10.1016/j.epsr.2017.01.019.T. Shen, Y. Li, and J. Xiang, “A graph-based power flow method for balanced distribution systems,” Energies, vol. 11, no. 3, Feb. 2018, Art. No. 511, doi: 10.3390/en11030511.M. C. Herrera-Bri˜nez, O. D. Montoya, L. Alvarado-Barrios, and H. R. Chamorro, “The equivalence between successive approximations and matricial load flow formulations,” Applied Sciences, vol. 11, no. 7, Mar. 2021, Art. No. 2905, doi: 10.3390/app11072905.S. H. Low, “Convex relaxation of optimal power flow-Part II: Exactness,” IEEE Trans. Control Netw. Syst, vol. 1, no. 2, pp. 177–189, Jun. 2014, doi: 10.1109/TCNS.2014.2323634.A. Marini, S. Mortazavi, L. Piegari, and M.-S. Ghazizadeh, “An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations,” Electric Power Systems Research, vol. 170, pp. 229–243, May. 2019, doi: 10.1016/j.epsr.2018.12.026O. D. Montoya and W. Gil-Gonzalez, “On the numerical analysis based on successive approximations for power flow problems in AC distribution systems,” Electric Power Systems Research, vol. 187, Oct. 2020, Art. No. 106454, doi: 10.1016/j.epsr.2020.106454.J. J. Grainger and W. D. Stevenson, “Power system analysis,” ser. McGraw-Hill series in electrical and computer engineering: Power and energy. McGraw-Hill, 2003.] T. Gonen, “Modern power system analysis,” CRC Press, 2016O. D. Montoya-Giraldo, W. J. Gil-Gonzalez, and A. Garces-Ruız, “Flujo de potencia optimo para redes radiales y enmalladas empleando programacion semidefinida,” TecnoLogicas, vol. 20, no. 40, pp. 29–42, Sep. 2017.S. H. Low, “Convex relaxation of optimal power flow Part I: Formulations and equivalence,” IEEE Trans. Control Netw. Syst, vol. 1, no. 1, pp. 15–27, Mar. 2014, doi: 10.1109/TCNS.2014.2309732.M. Milovanovic, J. Radosavljevic, and B. Perovic, “A backward/forward sweep power flow method for harmonic polluted radial distribution systems with distributed generation units,” International Transactions on Electrical Energy Systems, vol. 30, no. 5, Dec. 2019, doi: 10.1002/2050-7038.12310A. Garces, “A linear three-phase load flow for power distribution systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 827–828, Jan. 2016, doi: 10.1109/TPWRS.2015.2394296.O. D. Montoya, J. S. Giraldo, L. F. Grisales-Nore˜na, H. R. Chamorro, and L. Alvarado-Barrios, “Accurate and efficient derivativefree three-phase power flow method for unbalanced distribution networks,” Computation, vol. 9, no. 6, May. 2021, Art. No. 61, doi: 10.3390/computation9060061/.O. D. Montoya, L. F. Grisales-Norena, and W. Gil-Gonzalez, “Triangular matrix formulation for power flow analysis in radial DC resistive grids with CPLs,” IEEE Trans. Circuits Syst. II, vol. 67, no. 6, pp. 1094–1098, Jun. 2020, doi: 10.1109/TCSII.2019.2927290A. Garces, “Uniqueness of the power flow solutions in low voltage direct current grids,” Electr. Power Syst. Res, vol. 151, pp. 149–153, Oct. 2017, doi: 10.1016/j.epsr.2017.05.031.O. D. Montoya, W. Gil-Gonzalez, and L. Grisales-Nore˜na, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, no. 2, pp. 409–418, Jun. 2020, doi: 10.1016/j.asej.2019.08.011.D. V. Tien, R. Gono, and Z. Leonowicz, “A new approach newton-raphson Load flow analysis in power system networks with STATCOM,” in Lecture Notes in Electrical Engineering. Springer International Publishing, Apr. 2019, pp. 88–100, doi: 10.1007/978-3- 030-14907-9-10F. Milano, “Analogy and convergence of levenberg’s and lyapunov-Based methods for power flow analysis,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1663–1664, Mar. 2016, doi: 10.1109/TPWRS.2015.2415455http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL25082-49641-1-PB.pdf25082-49641-1-PB.pdfapplication/pdf591984https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/1/25082-49641-1-PB.pdfc02ebc7f56eb9fded97f4e95b47deb77MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT25082-49641-1-PB.pdf.txt25082-49641-1-PB.pdf.txtExtracted texttext/plain30536https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/4/25082-49641-1-PB.pdf.txt1dcc38b90ac6f12bd7297a237cebfc87MD54THUMBNAIL25082-49641-1-PB.pdf.jpg25082-49641-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg79168https://repositorio.utb.edu.co/bitstream/20.500.12585/10705/5/25082-49641-1-PB.pdf.jpgfd079632d314429654d1fc5966af8fa2MD5520.500.12585/10705oai:repositorio.utb.edu.co:20.500.12585/107052022-07-09 00:18:23.613Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |