Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19...
- Autores:
-
Alzate-Grisales, Jesús Alejandro
Mora-Rubio, Alejandro
Arteaga-Arteaga, Harold Brayan
Bravo-Ortiz, Mario Alejandro
Arias-Garzón, Daniel
López-Murillo, Luis Humberto
Mercado-Ruiz, Esteban
Villa-Pulgarin, Juan Pablo
Cardona-Morales, Oscar
Orozco-Arias, Simon
Buitrago-Carmona, Felipe
Palancares-Sosa, Maria Jose
Martínez-Rodríguez, Fernanda
Contreras-Ortiz, Sonia H.
Saborit-Torres, Jose Manuel
Montell Serrano, Joaquim Ángel
Ramirez-Sánchez, María Mónica
Sierra-Gaber, ario Alfonso
Jaramillo-Robled, Oscar
de la Iglesia-Vayá, Maria
Tabares-Soto, Reinel
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12339
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12339
- Palabra clave:
- Object Detection;
Deep Learning;
IOU
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6d2120147d8fb5e6dadaa9eaeef3c1b1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12339 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
title |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
spellingShingle |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia Object Detection; Deep Learning; IOU LEMB |
title_short |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
title_full |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
title_fullStr |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
title_full_unstemmed |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
title_sort |
Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia |
dc.creator.fl_str_mv |
Alzate-Grisales, Jesús Alejandro Mora-Rubio, Alejandro Arteaga-Arteaga, Harold Brayan Bravo-Ortiz, Mario Alejandro Arias-Garzón, Daniel López-Murillo, Luis Humberto Mercado-Ruiz, Esteban Villa-Pulgarin, Juan Pablo Cardona-Morales, Oscar Orozco-Arias, Simon Buitrago-Carmona, Felipe Palancares-Sosa, Maria Jose Martínez-Rodríguez, Fernanda Contreras-Ortiz, Sonia H. Saborit-Torres, Jose Manuel Montell Serrano, Joaquim Ángel Ramirez-Sánchez, María Mónica Sierra-Gaber, ario Alfonso Jaramillo-Robled, Oscar de la Iglesia-Vayá, Maria Tabares-Soto, Reinel |
dc.contributor.author.none.fl_str_mv |
Alzate-Grisales, Jesús Alejandro Mora-Rubio, Alejandro Arteaga-Arteaga, Harold Brayan Bravo-Ortiz, Mario Alejandro Arias-Garzón, Daniel López-Murillo, Luis Humberto Mercado-Ruiz, Esteban Villa-Pulgarin, Juan Pablo Cardona-Morales, Oscar Orozco-Arias, Simon Buitrago-Carmona, Felipe Palancares-Sosa, Maria Jose Martínez-Rodríguez, Fernanda Contreras-Ortiz, Sonia H. Saborit-Torres, Jose Manuel Montell Serrano, Joaquim Ángel Ramirez-Sánchez, María Mónica Sierra-Gaber, ario Alfonso Jaramillo-Robled, Oscar de la Iglesia-Vayá, Maria Tabares-Soto, Reinel |
dc.subject.keywords.spa.fl_str_mv |
Object Detection; Deep Learning; IOU |
topic |
Object Detection; Deep Learning; IOU LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s). |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T16:24:12Z |
dc.date.available.none.fl_str_mv |
2023-07-21T16:24:12Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12339 |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41597-022-01576-z |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757. 10.1038/s41597-022-01576-z Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12339 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Scientific Data, 9(1) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/1/s41597-022-01576-z%20%281%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/4/s41597-022-01576-z%20%281%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/5/s41597-022-01576-z%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
d8fcce60560f0392aae11af6adc4d1ef 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 6d23768ffac9957f1fb28b0284943e8d c77946a6a71765109e20f7d3534e2f6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021699340861440 |
spelling |
Alzate-Grisales, Jesús Alejandro919ca2b8-fb72-4d2c-9881-6e6a50c89c07Mora-Rubio, Alejandroa2ef93b1-ff62-42b9-abea-3bcd577bff51Arteaga-Arteaga, Harold Brayand9c7a7e5-f827-4a17-955c-9fe8db6b87ffBravo-Ortiz, Mario Alejandro5fab290d-6bb3-4471-91f8-06df2e0d7c66Arias-Garzón, Daniel1e153684-84c5-4201-9898-5c7038088237López-Murillo, Luis Humberto22fb712a-d145-459d-88b2-5fa07e158d76Mercado-Ruiz, Estebanafed0489-b0ee-4ef2-8521-c3482a88a57dVilla-Pulgarin, Juan Pablo68c42d40-dcfd-4045-86a2-0cc9a2ee1071Cardona-Morales, Oscarb366e18d-edb2-4738-9784-99b59e8ac658Orozco-Arias, Simonb8179e69-88e4-4b52-978a-9561854595e8Buitrago-Carmona, Felipe8c858c8b-9462-4bcf-bc3e-d30cfd41f7b2Palancares-Sosa, Maria Josebb2918c3-c513-4ec9-8985-90ba3461bde0Martínez-Rodríguez, Fernanda22a6c4ae-e4dc-4e3a-a99d-ed5c4051126aContreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a8Saborit-Torres, Jose Manueldedb4256-ddbb-4de0-bf5c-814076b0aba1Montell Serrano, Joaquim Ángelefb8993a-3169-41c4-9fde-8db893b3da56Ramirez-Sánchez, María Mónicac19936ae-2ecc-4776-aac8-e386984fcc83Sierra-Gaber, ario Alfonso30692121-7ea8-4baf-b8b1-46e5b0220a5cJaramillo-Robled, Oscar25318f7c-2547-46f3-81a6-c29cb29e4c21de la Iglesia-Vayá, Maria0a025913-87c2-4a57-820e-c7a3cb39f759Tabares-Soto, Reineld5ab6f5c-2187-4932-9851-2ae749396b042023-07-21T16:24:12Z2023-07-21T16:24:12Z20222023Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757.https://hdl.handle.net/20.500.12585/1233910.1038/s41597-022-01576-zUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s).10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Scientific Data, 9(1)Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombiainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Object Detection;Deep Learning;IOULEMBCartagena de IndiasWang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., (...), Peng, Z. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China (2020) JAMA - Journal of the American Medical Association, 323 (11), pp. 1061-1069. Cited 15066 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.2020.1585Anis, S., Lai, K.W., Chuah, J.H., Ali, S.M., Mohafez, H., Hadizadeh, M., Yan, D., (...), Ong, Z.-C. An overview of deep learning approaches in chest radiograph (2020) IEEE Access, 8, pp. 182347-182354. Cited 18 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3028390Ohata, E.F., Bezerra, G.M., Chagas, J.V.S.D., Lira Neto, A.V., Albuquerque, A.B., Albuquerque, V.H.C.D., Reboucas Filho, P.P. Automatic detection of COVID-19 infection using chest X-ray images through transfer learning (2021) IEEE/CAA Journal of Automatica Sinica, 8 (1), art. no. 9205687, pp. 239-248. Cited 145 times. https://www.ieee.org/membership-catalog/productdetail/showProductDetailPage.html?product=PER284-EPC doi: 10.1109/JAS.2020.1003393Breiding, M.J. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer (2009) Arch Intern Med, 63, pp. 2078-2086.Cohen, J.P., Morrison, P., Dao, L. Covid-19 image data collection (2020) Arxiv, 2003, p. 11597. Cited 1115 times. arXivde La Iglesia Vayá, M. (2006) Bimcv Covid-19+: A Large Annotated Dataset of Rx and Ct Images from Covid-19 Patients 01174 (2020)Desai, S., Baghal, A., Wongsurawat, T., Jenjaroenpun, P., Powell, T., Al-Shukri, S., Gates, K., (...), Prior, F. Chest imaging representing a COVID-19 positive rural U.S. population (2020) Scientific Data, 7 (1), art. no. 414. Cited 21 times. www.nature.com/sdata/ doi: 10.1038/s41597-020-00741-6Winther, H.B. (2020) Covid-19 Image Repository. Cited 32 times. https://doi.org/10.25835/Signoroni, A., Savardi, M., Benini, S., Adami, N., Leonardi, R., Gibellini, P., Vaccher, F., (...), Farina, D. BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset (2021) Medical Image Analysis, 71, art. no. 102046. Cited 52 times. http://www.elsevier.com/inca/publications/store/6/2/0/9/8/3/index.htt doi: 10.1016/j.media.2021.102046Hospitales, H.M. (2021) Covid Data save Lives. Cited 11 times. https://www.hmhospitales.com/coronavirus/covid-data-save-livesBustos, A., Pertusa, A., Salinas, J.-M., de la Iglesia-Vayá, M. PadChest: A large chest x-ray image dataset with multi-label annotated reports (2020) Medical Image Analysis, 66, art. no. 101797. Cited 171 times. http://www.elsevier.com/inca/publications/store/6/2/0/9/8/3/index.htt doi: 10.1016/j.media.2020.101797(2020) of the Valencia region BIMCV, M. I. D. Bimcv-covid19 – bimcv., /#1590859488150-148be708-c3f3 https://bimcv.cipf.es/bimcv-projects/bimcv-covid19Irvin, J. (2019) A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Cited 141 times. aaai.v33i01.3301590 https://doi.org/10.1609/Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 3462-3471. Cited 1710 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.369Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C.S., Liang, H., Baxter, S.L., McKeown, A., (...), Zhang, K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning (2018) Cell, 172 (5), pp. 1122-1131.e9. Cited 2239 times. https://www.sciencedirect.com/journal/cell doi: 10.1016/j.cell.2018.02.010Jose Manuel, S. (2020) Medical Imaging Data Structure Extended to Multiple Modalities and Anatomical Regions. Arxiv Arxiv, 2010, p. 00434.Strickland, N.H. PACS (picture archiving and communication systems): Filmless radiology (Open Access) (2000) Archives of Disease in Childhood, 83 (1), pp. 82-86. Cited 58 times. doi: 10.1136/adc.83.1.82Alzate-Grisales, J.A. Cov-caldas: A new covid-19 chest x-ray dataset from state of caldas-colombia (2022) figshare https://doi.org/10.6084/m9.figshare.c.5833484.v1(2020) Colombia Confirma Su Primer Caso De COVID-19. Cited 9 times. https://www.minsalud.gov.co/Paginas/Colombia-confirma-su-primer-caso-de-COVID-19.aspxArias-Garzón, D. Covid-19 detection in x-ray images using convolutional neural networks (2021) Machine Learning with Applications, 6, p. 100138. Cited 35 times.Ronneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical image segmentation (2015) Arxiv. Cited 411 times.Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017) Arxiv Preprint, 1704, p. 04861. Cited 11263 times. arXivChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 7086 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195Efficientnet: Rethinking model scaling for convolutional neural networks (2019) In International Conference on Machine Learning, pp. 6105-6114. Cited 6187 times. PMLRSimonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition (2014) . Arxiv Preprint, 1409, p. 1556. Cited 41989 times. arXivSzegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning (Open Access) (2017) 31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278-4284. Cited 6715 times. https://aaai.org/ocs/index.php/AAAI/AAAI17/indexHuang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q. Densely connected convolutional networks (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 2261-2269. Cited 19423 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.243He, K., Zhang, X., Ren, S., Sun, J. Identity mappings in deep residual networks (Open Access) (2016) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9908 LNCS, pp. 630-645. Cited 5056 times. https://www.springer.com/series/558 ISBN: 978-331946492-3 doi: 10.1007/978-3-319-46493-0_38He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., (...), Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge (Open Access) (2015) International Journal of Computer Vision, 115 (3), pp. 211-252. Cited 22545 times. http://www.kluweronline.com/issn/0920-5691/ doi: 10.1007/s11263-015-0816-yhttp://purl.org/coar/resource_type/c_6501ORIGINALs41597-022-01576-z (1).pdfs41597-022-01576-z (1).pdfapplication/pdf1215521https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/1/s41597-022-01576-z%20%281%29.pdfd8fcce60560f0392aae11af6adc4d1efMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTs41597-022-01576-z (1).pdf.txts41597-022-01576-z (1).pdf.txtExtracted texttext/plain35408https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/4/s41597-022-01576-z%20%281%29.pdf.txt6d23768ffac9957f1fb28b0284943e8dMD54THUMBNAILs41597-022-01576-z (1).pdf.jpgs41597-022-01576-z (1).pdf.jpgGenerated Thumbnailimage/jpeg9188https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/5/s41597-022-01576-z%20%281%29.pdf.jpgc77946a6a71765109e20f7d3534e2f6aMD5520.500.12585/12339oai:repositorio.utb.edu.co:20.500.12585/123392023-07-22 00:18:03.176Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |