Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia

The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19...

Full description

Autores:
Alzate-Grisales, Jesús Alejandro
Mora-Rubio, Alejandro
Arteaga-Arteaga, Harold Brayan
Bravo-Ortiz, Mario Alejandro
Arias-Garzón, Daniel
López-Murillo, Luis Humberto
Mercado-Ruiz, Esteban
Villa-Pulgarin, Juan Pablo
Cardona-Morales, Oscar
Orozco-Arias, Simon
Buitrago-Carmona, Felipe
Palancares-Sosa, Maria Jose
Martínez-Rodríguez, Fernanda
Contreras-Ortiz, Sonia H.
Saborit-Torres, Jose Manuel
Montell Serrano, Joaquim Ángel
Ramirez-Sánchez, María Mónica
Sierra-Gaber, ario Alfonso
Jaramillo-Robled, Oscar
de la Iglesia-Vayá, Maria
Tabares-Soto, Reinel
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12339
Acceso en línea:
https://hdl.handle.net/20.500.12585/12339
Palabra clave:
Object Detection;
Deep Learning;
IOU
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6d2120147d8fb5e6dadaa9eaeef3c1b1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12339
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
title Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
spellingShingle Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
Object Detection;
Deep Learning;
IOU
LEMB
title_short Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
title_full Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
title_fullStr Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
title_full_unstemmed Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
title_sort Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia
dc.creator.fl_str_mv Alzate-Grisales, Jesús Alejandro
Mora-Rubio, Alejandro
Arteaga-Arteaga, Harold Brayan
Bravo-Ortiz, Mario Alejandro
Arias-Garzón, Daniel
López-Murillo, Luis Humberto
Mercado-Ruiz, Esteban
Villa-Pulgarin, Juan Pablo
Cardona-Morales, Oscar
Orozco-Arias, Simon
Buitrago-Carmona, Felipe
Palancares-Sosa, Maria Jose
Martínez-Rodríguez, Fernanda
Contreras-Ortiz, Sonia H.
Saborit-Torres, Jose Manuel
Montell Serrano, Joaquim Ángel
Ramirez-Sánchez, María Mónica
Sierra-Gaber, ario Alfonso
Jaramillo-Robled, Oscar
de la Iglesia-Vayá, Maria
Tabares-Soto, Reinel
dc.contributor.author.none.fl_str_mv Alzate-Grisales, Jesús Alejandro
Mora-Rubio, Alejandro
Arteaga-Arteaga, Harold Brayan
Bravo-Ortiz, Mario Alejandro
Arias-Garzón, Daniel
López-Murillo, Luis Humberto
Mercado-Ruiz, Esteban
Villa-Pulgarin, Juan Pablo
Cardona-Morales, Oscar
Orozco-Arias, Simon
Buitrago-Carmona, Felipe
Palancares-Sosa, Maria Jose
Martínez-Rodríguez, Fernanda
Contreras-Ortiz, Sonia H.
Saborit-Torres, Jose Manuel
Montell Serrano, Joaquim Ángel
Ramirez-Sánchez, María Mónica
Sierra-Gaber, ario Alfonso
Jaramillo-Robled, Oscar
de la Iglesia-Vayá, Maria
Tabares-Soto, Reinel
dc.subject.keywords.spa.fl_str_mv Object Detection;
Deep Learning;
IOU
topic Object Detection;
Deep Learning;
IOU
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s).
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:24:12Z
dc.date.available.none.fl_str_mv 2023-07-21T16:24:12Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12339
dc.identifier.doi.none.fl_str_mv 10.1038/s41597-022-01576-z
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757.
10.1038/s41597-022-01576-z
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12339
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Scientific Data, 9(1)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/1/s41597-022-01576-z%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/4/s41597-022-01576-z%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/5/s41597-022-01576-z%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv d8fcce60560f0392aae11af6adc4d1ef
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
6d23768ffac9957f1fb28b0284943e8d
c77946a6a71765109e20f7d3534e2f6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021699340861440
spelling Alzate-Grisales, Jesús Alejandro919ca2b8-fb72-4d2c-9881-6e6a50c89c07Mora-Rubio, Alejandroa2ef93b1-ff62-42b9-abea-3bcd577bff51Arteaga-Arteaga, Harold Brayand9c7a7e5-f827-4a17-955c-9fe8db6b87ffBravo-Ortiz, Mario Alejandro5fab290d-6bb3-4471-91f8-06df2e0d7c66Arias-Garzón, Daniel1e153684-84c5-4201-9898-5c7038088237López-Murillo, Luis Humberto22fb712a-d145-459d-88b2-5fa07e158d76Mercado-Ruiz, Estebanafed0489-b0ee-4ef2-8521-c3482a88a57dVilla-Pulgarin, Juan Pablo68c42d40-dcfd-4045-86a2-0cc9a2ee1071Cardona-Morales, Oscarb366e18d-edb2-4738-9784-99b59e8ac658Orozco-Arias, Simonb8179e69-88e4-4b52-978a-9561854595e8Buitrago-Carmona, Felipe8c858c8b-9462-4bcf-bc3e-d30cfd41f7b2Palancares-Sosa, Maria Josebb2918c3-c513-4ec9-8985-90ba3461bde0Martínez-Rodríguez, Fernanda22a6c4ae-e4dc-4e3a-a99d-ed5c4051126aContreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a8Saborit-Torres, Jose Manueldedb4256-ddbb-4de0-bf5c-814076b0aba1Montell Serrano, Joaquim Ángelefb8993a-3169-41c4-9fde-8db893b3da56Ramirez-Sánchez, María Mónicac19936ae-2ecc-4776-aac8-e386984fcc83Sierra-Gaber, ario Alfonso30692121-7ea8-4baf-b8b1-46e5b0220a5cJaramillo-Robled, Oscar25318f7c-2547-46f3-81a6-c29cb29e4c21de la Iglesia-Vayá, Maria0a025913-87c2-4a57-820e-c7a3cb39f759Tabares-Soto, Reineld5ab6f5c-2187-4932-9851-2ae749396b042023-07-21T16:24:12Z2023-07-21T16:24:12Z20222023Alzate-Grisales, J. A., Mora-Rubio, A., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Arias-Garzón, D., López-Murillo, L. H., ... & Tabares-Soto, R. (2022). Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia. Scientific Data, 9(1), 757.https://hdl.handle.net/20.500.12585/1233910.1038/s41597-022-01576-zUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s).10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Scientific Data, 9(1)Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombiainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Object Detection;Deep Learning;IOULEMBCartagena de IndiasWang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., (...), Peng, Z. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China (2020) JAMA - Journal of the American Medical Association, 323 (11), pp. 1061-1069. Cited 15066 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.2020.1585Anis, S., Lai, K.W., Chuah, J.H., Ali, S.M., Mohafez, H., Hadizadeh, M., Yan, D., (...), Ong, Z.-C. An overview of deep learning approaches in chest radiograph (2020) IEEE Access, 8, pp. 182347-182354. Cited 18 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3028390Ohata, E.F., Bezerra, G.M., Chagas, J.V.S.D., Lira Neto, A.V., Albuquerque, A.B., Albuquerque, V.H.C.D., Reboucas Filho, P.P. Automatic detection of COVID-19 infection using chest X-ray images through transfer learning (2021) IEEE/CAA Journal of Automatica Sinica, 8 (1), art. no. 9205687, pp. 239-248. Cited 145 times. https://www.ieee.org/membership-catalog/productdetail/showProductDetailPage.html?product=PER284-EPC doi: 10.1109/JAS.2020.1003393Breiding, M.J. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer (2009) Arch Intern Med, 63, pp. 2078-2086.Cohen, J.P., Morrison, P., Dao, L. Covid-19 image data collection (2020) Arxiv, 2003, p. 11597. Cited 1115 times. arXivde La Iglesia Vayá, M. (2006) Bimcv Covid-19+: A Large Annotated Dataset of Rx and Ct Images from Covid-19 Patients 01174 (2020)Desai, S., Baghal, A., Wongsurawat, T., Jenjaroenpun, P., Powell, T., Al-Shukri, S., Gates, K., (...), Prior, F. Chest imaging representing a COVID-19 positive rural U.S. population (2020) Scientific Data, 7 (1), art. no. 414. Cited 21 times. www.nature.com/sdata/ doi: 10.1038/s41597-020-00741-6Winther, H.B. (2020) Covid-19 Image Repository. Cited 32 times. https://doi.org/10.25835/Signoroni, A., Savardi, M., Benini, S., Adami, N., Leonardi, R., Gibellini, P., Vaccher, F., (...), Farina, D. BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset (2021) Medical Image Analysis, 71, art. no. 102046. Cited 52 times. http://www.elsevier.com/inca/publications/store/6/2/0/9/8/3/index.htt doi: 10.1016/j.media.2021.102046Hospitales, H.M. (2021) Covid Data save Lives. Cited 11 times. https://www.hmhospitales.com/coronavirus/covid-data-save-livesBustos, A., Pertusa, A., Salinas, J.-M., de la Iglesia-Vayá, M. PadChest: A large chest x-ray image dataset with multi-label annotated reports (2020) Medical Image Analysis, 66, art. no. 101797. Cited 171 times. http://www.elsevier.com/inca/publications/store/6/2/0/9/8/3/index.htt doi: 10.1016/j.media.2020.101797(2020) of the Valencia region BIMCV, M. I. D. Bimcv-covid19 – bimcv., /#1590859488150-148be708-c3f3 https://bimcv.cipf.es/bimcv-projects/bimcv-covid19Irvin, J. (2019) A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Cited 141 times. aaai.v33i01.3301590 https://doi.org/10.1609/Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 3462-3471. Cited 1710 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.369Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C.S., Liang, H., Baxter, S.L., McKeown, A., (...), Zhang, K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning (2018) Cell, 172 (5), pp. 1122-1131.e9. Cited 2239 times. https://www.sciencedirect.com/journal/cell doi: 10.1016/j.cell.2018.02.010Jose Manuel, S. (2020) Medical Imaging Data Structure Extended to Multiple Modalities and Anatomical Regions. Arxiv Arxiv, 2010, p. 00434.Strickland, N.H. PACS (picture archiving and communication systems): Filmless radiology (Open Access) (2000) Archives of Disease in Childhood, 83 (1), pp. 82-86. Cited 58 times. doi: 10.1136/adc.83.1.82Alzate-Grisales, J.A. Cov-caldas: A new covid-19 chest x-ray dataset from state of caldas-colombia (2022) figshare https://doi.org/10.6084/m9.figshare.c.5833484.v1(2020) Colombia Confirma Su Primer Caso De COVID-19. Cited 9 times. https://www.minsalud.gov.co/Paginas/Colombia-confirma-su-primer-caso-de-COVID-19.aspxArias-Garzón, D. Covid-19 detection in x-ray images using convolutional neural networks (2021) Machine Learning with Applications, 6, p. 100138. Cited 35 times.Ronneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical image segmentation (2015) Arxiv. Cited 411 times.Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017) Arxiv Preprint, 1704, p. 04861. Cited 11263 times. arXivChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 7086 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195Efficientnet: Rethinking model scaling for convolutional neural networks (2019) In International Conference on Machine Learning, pp. 6105-6114. Cited 6187 times. PMLRSimonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition (2014) . Arxiv Preprint, 1409, p. 1556. Cited 41989 times. arXivSzegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning (Open Access) (2017) 31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278-4284. Cited 6715 times. https://aaai.org/ocs/index.php/AAAI/AAAI17/indexHuang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q. Densely connected convolutional networks (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 2261-2269. Cited 19423 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.243He, K., Zhang, X., Ren, S., Sun, J. Identity mappings in deep residual networks (Open Access) (2016) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9908 LNCS, pp. 630-645. Cited 5056 times. https://www.springer.com/series/558 ISBN: 978-331946492-3 doi: 10.1007/978-3-319-46493-0_38He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., (...), Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge (Open Access) (2015) International Journal of Computer Vision, 115 (3), pp. 211-252. Cited 22545 times. http://www.kluweronline.com/issn/0920-5691/ doi: 10.1007/s11263-015-0816-yhttp://purl.org/coar/resource_type/c_6501ORIGINALs41597-022-01576-z (1).pdfs41597-022-01576-z (1).pdfapplication/pdf1215521https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/1/s41597-022-01576-z%20%281%29.pdfd8fcce60560f0392aae11af6adc4d1efMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTs41597-022-01576-z (1).pdf.txts41597-022-01576-z (1).pdf.txtExtracted texttext/plain35408https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/4/s41597-022-01576-z%20%281%29.pdf.txt6d23768ffac9957f1fb28b0284943e8dMD54THUMBNAILs41597-022-01576-z (1).pdf.jpgs41597-022-01576-z (1).pdf.jpgGenerated Thumbnailimage/jpeg9188https://repositorio.utb.edu.co/bitstream/20.500.12585/12339/5/s41597-022-01576-z%20%281%29.pdf.jpgc77946a6a71765109e20f7d3534e2f6aMD5520.500.12585/12339oai:repositorio.utb.edu.co:20.500.12585/123392023-07-22 00:18:03.176Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=