Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant

Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8904
Acceso en línea:
https://hdl.handle.net/20.500.12585/8904
Palabra clave:
Ammonia
Catalytic converters
Exergy
Nitric acid
Avoidable exergy destructions
Destroyed exergy
Destruction analysis
Exergy Analysis
Nitric acid production
Production plant
Reduce costs
Scientific studies
Catalytic oxidation
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6bf93c5fe2fb54ba02daa30978c5e73d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8904
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
spelling 2020-03-26T16:32:35Z2020-03-26T16:32:35Z2018ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-20189780791852088https://hdl.handle.net/20.500.12585/890410.1115/IMECE2018-87495Universidad Tecnológica de BolívarRepositorio UTB565816109005720787880257207884321Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME.American Society of Mechanical Engineers (ASME)Recurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448eScopus2-s2.0-85063156043ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plantinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAmmoniaCatalytic convertersExergyNitric acidAvoidable exergy destructionsDestroyed exergyDestruction analysisExergy AnalysisNitric acid productionProduction plantReduce costsScientific studiesCatalytic oxidation9 November 2018 through 15 November 2018Fajardo Cuadro, Juan GabrielValle H.Buelvas A.(2017) Energy Information Administraion, , https://www.eia.gov/, 5 January En líneaBP Global, , www.bp.com/energyoutlook, En línea. Último acceso: 2017 January 15Riekert, L., The efficiency of energy utilization in chemical process (1974) Pergamon Press, 29, pp. 1613-1620Denbigh, K.G., The second-law efficiency of chemical process (1956) De Chemical Engineering Science, 1, p. 9Vilarinho, A., Campos, J., Pinho, C., Energy and exergy analysis of an aromatics plant (2016) Case Studies in Thermal Engineering, 8, pp. 115-127Mewada, R., Nimkar, S., Minimization of exergy losses in mono high pressure nitric acid process (2015) International Journal of Exergy, 17 (2)Kelly, S., (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy DestructionTsatsaronis, G., Park, M., On avoidable and unavoidable exergy destructions and invstment costs in thermal systems (2002) Energy Conversion and Management, 43, pp. 1259-1270Morosuk, T., Tsatsaronis, G., Advanced exergy analysis for chemically reacting systems – Application to a simple open gas-turbine system (2009) International Journal of Thermodynamics, 12 (3), pp. 105-111Tsatsaronis, G., Morosuk, T., Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas (2010) Energy, 35, pp. 820-829Connor, H., The manufacture of nitric acid (1976) Platinum Metals Rev, 1, pp. 2-9http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8904/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8904oai:repositorio.utb.edu.co:20.500.12585/89042023-05-26 09:18:22.418Repositorio Institucional UTBrepositorioutb@utb.edu.co
dc.title.none.fl_str_mv Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
title Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
spellingShingle Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
Ammonia
Catalytic converters
Exergy
Nitric acid
Avoidable exergy destructions
Destroyed exergy
Destruction analysis
Exergy Analysis
Nitric acid production
Production plant
Reduce costs
Scientific studies
Catalytic oxidation
title_short Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
title_full Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
title_fullStr Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
title_full_unstemmed Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
title_sort Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
dc.subject.keywords.none.fl_str_mv Ammonia
Catalytic converters
Exergy
Nitric acid
Avoidable exergy destructions
Destroyed exergy
Destruction analysis
Exergy Analysis
Nitric acid production
Production plant
Reduce costs
Scientific studies
Catalytic oxidation
topic Ammonia
Catalytic converters
Exergy
Nitric acid
Avoidable exergy destructions
Destroyed exergy
Destruction analysis
Exergy Analysis
Nitric acid production
Production plant
Reduce costs
Scientific studies
Catalytic oxidation
description Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:35Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:35Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018
dc.identifier.isbn.none.fl_str_mv 9780791852088
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8904
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE2018-87495
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56581610900
57207878802
57207884321
identifier_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018
9780791852088
10.1115/IMECE2018-87495
Universidad Tecnológica de Bolívar
Repositorio UTB
56581610900
57207878802
57207884321
url https://hdl.handle.net/20.500.12585/8904
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 9 November 2018 through 15 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448e
Scopus2-s2.0-85063156043
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8904/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021703393607680