Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8904
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8904
- Palabra clave:
- Ammonia
Catalytic converters
Exergy
Nitric acid
Avoidable exergy destructions
Destroyed exergy
Destruction analysis
Exergy Analysis
Nitric acid production
Production plant
Reduce costs
Scientific studies
Catalytic oxidation
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6bf93c5fe2fb54ba02daa30978c5e73d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8904 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
spelling |
2020-03-26T16:32:35Z2020-03-26T16:32:35Z2018ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-20189780791852088https://hdl.handle.net/20.500.12585/890410.1115/IMECE2018-87495Universidad Tecnológica de BolívarRepositorio UTB565816109005720787880257207884321Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME.American Society of Mechanical Engineers (ASME)Recurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448eScopus2-s2.0-85063156043ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plantinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAmmoniaCatalytic convertersExergyNitric acidAvoidable exergy destructionsDestroyed exergyDestruction analysisExergy AnalysisNitric acid productionProduction plantReduce costsScientific studiesCatalytic oxidation9 November 2018 through 15 November 2018Fajardo Cuadro, Juan GabrielValle H.Buelvas A.(2017) Energy Information Administraion, , https://www.eia.gov/, 5 January En líneaBP Global, , www.bp.com/energyoutlook, En línea. Último acceso: 2017 January 15Riekert, L., The efficiency of energy utilization in chemical process (1974) Pergamon Press, 29, pp. 1613-1620Denbigh, K.G., The second-law efficiency of chemical process (1956) De Chemical Engineering Science, 1, p. 9Vilarinho, A., Campos, J., Pinho, C., Energy and exergy analysis of an aromatics plant (2016) Case Studies in Thermal Engineering, 8, pp. 115-127Mewada, R., Nimkar, S., Minimization of exergy losses in mono high pressure nitric acid process (2015) International Journal of Exergy, 17 (2)Kelly, S., (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy DestructionTsatsaronis, G., Park, M., On avoidable and unavoidable exergy destructions and invstment costs in thermal systems (2002) Energy Conversion and Management, 43, pp. 1259-1270Morosuk, T., Tsatsaronis, G., Advanced exergy analysis for chemically reacting systems – Application to a simple open gas-turbine system (2009) International Journal of Thermodynamics, 12 (3), pp. 105-111Tsatsaronis, G., Morosuk, T., Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas (2010) Energy, 35, pp. 820-829Connor, H., The manufacture of nitric acid (1976) Platinum Metals Rev, 1, pp. 2-9http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8904/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8904oai:repositorio.utb.edu.co:20.500.12585/89042023-05-26 09:18:22.418Repositorio Institucional UTBrepositorioutb@utb.edu.co |
dc.title.none.fl_str_mv |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
title |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
spellingShingle |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant Ammonia Catalytic converters Exergy Nitric acid Avoidable exergy destructions Destroyed exergy Destruction analysis Exergy Analysis Nitric acid production Production plant Reduce costs Scientific studies Catalytic oxidation |
title_short |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
title_full |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
title_fullStr |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
title_full_unstemmed |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
title_sort |
Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant |
dc.subject.keywords.none.fl_str_mv |
Ammonia Catalytic converters Exergy Nitric acid Avoidable exergy destructions Destroyed exergy Destruction analysis Exergy Analysis Nitric acid production Production plant Reduce costs Scientific studies Catalytic oxidation |
topic |
Ammonia Catalytic converters Exergy Nitric acid Avoidable exergy destructions Destroyed exergy Destruction analysis Exergy Analysis Nitric acid production Production plant Reduce costs Scientific studies Catalytic oxidation |
description |
Exergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:35Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:35Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018 |
dc.identifier.isbn.none.fl_str_mv |
9780791852088 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8904 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE2018-87495 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56581610900 57207878802 57207884321 |
identifier_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018 9780791852088 10.1115/IMECE2018-87495 Universidad Tecnológica de Bolívar Repositorio UTB 56581610900 57207878802 57207884321 |
url |
https://hdl.handle.net/20.500.12585/8904 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
9 November 2018 through 15 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448e Scopus2-s2.0-85063156043 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8904/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021703393607680 |