Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challen...
- Autores:
-
Cabarcas-Mena, Yina P.
Marrugo, Andres G.
Contreras-Ortiz, Sonia H.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12347
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12347
- Palabra clave:
- Evoked Potentials;
Electroencephalography;
Approximate Entropy
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6bebc76f88cddf42d7690d3730ac5834 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12347 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
title |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
spellingShingle |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs Evoked Potentials; Electroencephalography; Approximate Entropy LEMB |
title_short |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
title_full |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
title_fullStr |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
title_full_unstemmed |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
title_sort |
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs |
dc.creator.fl_str_mv |
Cabarcas-Mena, Yina P. Marrugo, Andres G. Contreras-Ortiz, Sonia H. |
dc.contributor.author.none.fl_str_mv |
Cabarcas-Mena, Yina P. Marrugo, Andres G. Contreras-Ortiz, Sonia H. |
dc.subject.keywords.spa.fl_str_mv |
Evoked Potentials; Electroencephalography; Approximate Entropy |
topic |
Evoked Potentials; Electroencephalography; Approximate Entropy LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T16:25:40Z |
dc.date.available.none.fl_str_mv |
2023-07-21T16:25:40Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12347 |
dc.identifier.doi.none.fl_str_mv |
10.1109/STSIVA53688.2021.9592021 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE. 10.1109/STSIVA53688.2021.9592021 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12347 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/1/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/4/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/5/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.jpg |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 f4a9268c46392412dd697c9e2bb2803d bab4da0d7a0f2eea74afbbcbed4c051b 5ffaa997b9ad7b4e3d864096743ba5ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021591722360832 |
spelling |
Cabarcas-Mena, Yina P.d03500fe-1d90-4e09-8e23-190978d9e262Marrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f542Contreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a82023-07-21T16:25:40Z2023-07-21T16:25:40Z20212023Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1234710.1109/STSIVA53688.2021.9592021Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAttention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Evoked Potentials;Electroencephalography;Approximate EntropyLEMBCartagena de IndiasVásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., De La Peñ, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para la Atención de Trastornos Mentales, Instituto Nacional de Psiquiatría Ramón de la Fuente. Cited 7 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. MéxicoLenartowicz, A., Loo, S.K. Use of EEG to Diagnose ADHD (2014) Current Psychiatry Reports, 16 (11), art. no. 498. Cited 154 times. http://www.springerlink.com/content/1523-3812/ doi: 10.1007/s11920-014-0498-0Mercado-Aguirre, I.M., Gutiérrez-Ruiz, K., Contreras-Ortiz, S.H. Acquisition and Analysis of Cognitive Evoked Potentials using an Emotiv Headset for ADHD Evaluation in Children (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730225. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730225Mohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 110 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2Ghassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 34 times. http://www.sciencedirect.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024Mercado-Aguirre, I.M., Gutierrez-Ruiz, K.P., Contreras-Ortiz, S.H. EEG feature selection for ADHD detection in children (2020) 16th International Symposium on Medical Information Processing and Analysis 11583 International Society for Optics and PhotonicsNima, H., Gavet, Y., Debayle, J. Classification of time-series images using deep convolutional neural networks (2017) Tenth International Conference on Machine Vision ICMV, p. 2018. Cited 2 times. 10696. International Society for Optics and PhotonicsZeng, M., Zhang, X., Zhao, C., Lu, X., Meng, Q. GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG (2021) Journal of Neuroscience Methods, 347, art. no. 108953. Cited 16 times. www.elsevier.com/locate/jneumeth doi: 10.1016/j.jneumeth.2020.108953Eckmann, J.-P., Oliffson Kamphorst, O., Ruelle, D. Recurrence plots of dynamical systems (1987) EPL, 4 (9), pp. 973-977. Cited 2000 times. doi: 10.1209/0295-5075/4/9/004Roh, D., Shin, H. Recurrence plot and machine learning for signal quality assessment of photoplethysmogram in mobile environment (Open Access) (2021) Sensors, 21 (6), art. no. 2188, pp. 1-12. Cited 12 times. https://www.mdpi.com/1424-8220/21/6/2188/pdf doi: 10.3390/s21062188Webber Jr., C.L., Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies (Open Access) (1994) Journal of Applied Physiology, 76 (2), pp. 965-973. Cited 1158 times. https://www.physiology.org/journal/jappl doi: 10.1152/jappl.1994.76.2.965Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals (Open Access) (2011) International Journal of Neural Systems, 21 (3), pp. 199-211. Cited 277 times. doi: 10.1142/S0129065711002808Garcia-Ceja, E., Uddin, M.Z., Torresen, J. Classification of Recurrence Plots' Distance Matrices with a Convolutional Neural Network for Activity Recognition (Open Access) (2018) Procedia Computer Science, 130, pp. 157-163. Cited 46 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2018.04.025Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., (...), Chen, T. Recent advances in convolutional neural networks (2018) Pattern Recognition, 77, pp. 354-377. Cited 2608 times. www.elsevier.com/inca/publications/store/3/2/8/ doi: 10.1016/j.patcog.2017.10.013Krizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks (Open Access) (2012) Advances in Neural Information Processing Systems, 2, pp. 1097-1105. Cited 71780 times. ISBN: 978-162748003-1Chollet, F. (2015) Keras. Cited 7684 times. https://github.com/fchollet/kerasKingma, D.P., Ba, J. Adam: A Method for Stochastic Optimization. Cited 51822 times. CoRR abs/1412.6980. arXiv 1412.6980Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting (Open Access) (2014) Journal of Machine Learning Research, 15, pp. 1929-1958. Cited 26055 times. http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdfYing, X. An Overview of Overfitting and its Solutions (Open Access) (2019) Journal of Physics: Conference Series, 1168 (2), art. no. 022022. Cited 558 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1168/2/022022Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data (Open Access) (2002) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66 (2). Cited 798 times. doi: 10.1103/PhysRevE.66.026702Sultornsanee, S., Zeid, I., Kamarthi, S. Classification of electromyogram using recurrence quantification analysis (2011) Procedia Computer Science, 6, pp. 375-380. Cited 15 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2011.08.069Li, Y., Ma, S., Hu, Z., Chen, J., Su, G., Dou, W. Single trial EEG classification applied to a face recognition experiment using different feature extraction methods (2015) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, art. no. 7320064, pp. 7246-7249. Cited 3 times. ISBN: 978-142449271-8 doi: 10.1109/EMBC.2015.7320064Liu, G., Zhou, W., Geng, M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network (2020) International Journal of Neural Systems, 30 (4), art. no. 1950024. Cited 57 times. http://www.worldscinet.com/ijns/ijns.shtml doi: 10.1142/S0129065719500242Altınkaynak, M., Dolu, N., Güven, A., Pektaş, F., Özmen, S., Demirci, E., İzzetoğlu, M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 927-937. Cited 21 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.04.006Kaisar, S. Developmental dyslexia detection using machine learning techniques: A survey (2020) ICT Express, 6 (3), pp. 181-184. Cited 18 times. https://www.journals.elsevier.com/ict-express/ doi: 10.1016/j.icte.2020.05.006Josephine, V.L., Helen, A., Nirmala, A.P., Alluri, V.L. Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance of Classification Model (2021) IOP Conference Series: Materials Science and Engineering, 1131 (1). Cited 10 times. IOP PublishingVahid, A., Bluschke, A., Roessner, V., Stober, S., Beste, C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls (Open Access) (2019) Journal of Clinical Medicine, 8 (7), art. no. 1055. Cited 48 times. https://www.mdpi.com/2077-0383/8/7/1055/pdf doi: 10.3390/jcm8071055Ekhlasi, A., Nasrabadi, A.M., Mohammadi, M. Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals (Open Access) (2021) Frontiers in Biomedical Technologies, 8 (2), pp. 115-122. Cited 11 times. https://fbt.tums.ac.ir/index.php/fbt/article/view/302 doi: 10.18502/fbt.v8i2.6515http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdfScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdfapplication/pdf206805https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/1/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdff4a9268c46392412dd697c9e2bb2803dMD51TEXTScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.txtScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.txtExtracted texttext/plain2664https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/4/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.txtbab4da0d7a0f2eea74afbbcbed4c051bMD54THUMBNAILScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.jpgScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.jpgGenerated Thumbnailimage/jpeg6345https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/5/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.jpg5ffaa997b9ad7b4e3d864096743ba5adMD5520.500.12585/12347oai:repositorio.utb.edu.co:20.500.12585/123472023-07-22 00:17:47.391Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |