Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs

Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challen...

Full description

Autores:
Cabarcas-Mena, Yina P.
Marrugo, Andres G.
Contreras-Ortiz, Sonia H.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12347
Acceso en línea:
https://hdl.handle.net/20.500.12585/12347
Palabra clave:
Evoked Potentials;
Electroencephalography;
Approximate Entropy
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6bebc76f88cddf42d7690d3730ac5834
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12347
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
title Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
spellingShingle Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
Evoked Potentials;
Electroencephalography;
Approximate Entropy
LEMB
title_short Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
title_full Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
title_fullStr Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
title_full_unstemmed Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
title_sort Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
dc.creator.fl_str_mv Cabarcas-Mena, Yina P.
Marrugo, Andres G.
Contreras-Ortiz, Sonia H.
dc.contributor.author.none.fl_str_mv Cabarcas-Mena, Yina P.
Marrugo, Andres G.
Contreras-Ortiz, Sonia H.
dc.subject.keywords.spa.fl_str_mv Evoked Potentials;
Electroencephalography;
Approximate Entropy
topic Evoked Potentials;
Electroencephalography;
Approximate Entropy
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:25:40Z
dc.date.available.none.fl_str_mv 2023-07-21T16:25:40Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12347
dc.identifier.doi.none.fl_str_mv 10.1109/STSIVA53688.2021.9592021
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.
10.1109/STSIVA53688.2021.9592021
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12347
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/1/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/4/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/5/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f4a9268c46392412dd697c9e2bb2803d
bab4da0d7a0f2eea74afbbcbed4c051b
5ffaa997b9ad7b4e3d864096743ba5ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021591722360832
spelling Cabarcas-Mena, Yina P.d03500fe-1d90-4e09-8e23-190978d9e262Marrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f542Contreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a82023-07-21T16:25:40Z2023-07-21T16:25:40Z20212023Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1234710.1109/STSIVA53688.2021.9592021Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAttention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Evoked Potentials;Electroencephalography;Approximate EntropyLEMBCartagena de IndiasVásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., De La Peñ, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para la Atención de Trastornos Mentales, Instituto Nacional de Psiquiatría Ramón de la Fuente. Cited 7 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. MéxicoLenartowicz, A., Loo, S.K. Use of EEG to Diagnose ADHD (2014) Current Psychiatry Reports, 16 (11), art. no. 498. Cited 154 times. http://www.springerlink.com/content/1523-3812/ doi: 10.1007/s11920-014-0498-0Mercado-Aguirre, I.M., Gutiérrez-Ruiz, K., Contreras-Ortiz, S.H. Acquisition and Analysis of Cognitive Evoked Potentials using an Emotiv Headset for ADHD Evaluation in Children (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730225. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730225Mohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 110 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2Ghassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 34 times. http://www.sciencedirect.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024Mercado-Aguirre, I.M., Gutierrez-Ruiz, K.P., Contreras-Ortiz, S.H. EEG feature selection for ADHD detection in children (2020) 16th International Symposium on Medical Information Processing and Analysis 11583 International Society for Optics and PhotonicsNima, H., Gavet, Y., Debayle, J. Classification of time-series images using deep convolutional neural networks (2017) Tenth International Conference on Machine Vision ICMV, p. 2018. Cited 2 times. 10696. International Society for Optics and PhotonicsZeng, M., Zhang, X., Zhao, C., Lu, X., Meng, Q. GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG (2021) Journal of Neuroscience Methods, 347, art. no. 108953. Cited 16 times. www.elsevier.com/locate/jneumeth doi: 10.1016/j.jneumeth.2020.108953Eckmann, J.-P., Oliffson Kamphorst, O., Ruelle, D. Recurrence plots of dynamical systems (1987) EPL, 4 (9), pp. 973-977. Cited 2000 times. doi: 10.1209/0295-5075/4/9/004Roh, D., Shin, H. Recurrence plot and machine learning for signal quality assessment of photoplethysmogram in mobile environment (Open Access) (2021) Sensors, 21 (6), art. no. 2188, pp. 1-12. Cited 12 times. https://www.mdpi.com/1424-8220/21/6/2188/pdf doi: 10.3390/s21062188Webber Jr., C.L., Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies (Open Access) (1994) Journal of Applied Physiology, 76 (2), pp. 965-973. Cited 1158 times. https://www.physiology.org/journal/jappl doi: 10.1152/jappl.1994.76.2.965Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals (Open Access) (2011) International Journal of Neural Systems, 21 (3), pp. 199-211. Cited 277 times. doi: 10.1142/S0129065711002808Garcia-Ceja, E., Uddin, M.Z., Torresen, J. Classification of Recurrence Plots' Distance Matrices with a Convolutional Neural Network for Activity Recognition (Open Access) (2018) Procedia Computer Science, 130, pp. 157-163. Cited 46 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2018.04.025Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., (...), Chen, T. Recent advances in convolutional neural networks (2018) Pattern Recognition, 77, pp. 354-377. Cited 2608 times. www.elsevier.com/inca/publications/store/3/2/8/ doi: 10.1016/j.patcog.2017.10.013Krizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks (Open Access) (2012) Advances in Neural Information Processing Systems, 2, pp. 1097-1105. Cited 71780 times. ISBN: 978-162748003-1Chollet, F. (2015) Keras. Cited 7684 times. https://github.com/fchollet/kerasKingma, D.P., Ba, J. Adam: A Method for Stochastic Optimization. Cited 51822 times. CoRR abs/1412.6980. arXiv 1412.6980Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting (Open Access) (2014) Journal of Machine Learning Research, 15, pp. 1929-1958. Cited 26055 times. http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdfYing, X. An Overview of Overfitting and its Solutions (Open Access) (2019) Journal of Physics: Conference Series, 1168 (2), art. no. 022022. Cited 558 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1168/2/022022Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data (Open Access) (2002) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66 (2). Cited 798 times. doi: 10.1103/PhysRevE.66.026702Sultornsanee, S., Zeid, I., Kamarthi, S. Classification of electromyogram using recurrence quantification analysis (2011) Procedia Computer Science, 6, pp. 375-380. Cited 15 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2011.08.069Li, Y., Ma, S., Hu, Z., Chen, J., Su, G., Dou, W. Single trial EEG classification applied to a face recognition experiment using different feature extraction methods (2015) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, art. no. 7320064, pp. 7246-7249. Cited 3 times. ISBN: 978-142449271-8 doi: 10.1109/EMBC.2015.7320064Liu, G., Zhou, W., Geng, M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network (2020) International Journal of Neural Systems, 30 (4), art. no. 1950024. Cited 57 times. http://www.worldscinet.com/ijns/ijns.shtml doi: 10.1142/S0129065719500242Altınkaynak, M., Dolu, N., Güven, A., Pektaş, F., Özmen, S., Demirci, E., İzzetoğlu, M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 927-937. Cited 21 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.04.006Kaisar, S. Developmental dyslexia detection using machine learning techniques: A survey (2020) ICT Express, 6 (3), pp. 181-184. Cited 18 times. https://www.journals.elsevier.com/ict-express/ doi: 10.1016/j.icte.2020.05.006Josephine, V.L., Helen, A., Nirmala, A.P., Alluri, V.L. Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance of Classification Model (2021) IOP Conference Series: Materials Science and Engineering, 1131 (1). Cited 10 times. IOP PublishingVahid, A., Bluschke, A., Roessner, V., Stober, S., Beste, C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls (Open Access) (2019) Journal of Clinical Medicine, 8 (7), art. no. 1055. Cited 48 times. https://www.mdpi.com/2077-0383/8/7/1055/pdf doi: 10.3390/jcm8071055Ekhlasi, A., Nasrabadi, A.M., Mohammadi, M. Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals (Open Access) (2021) Frontiers in Biomedical Technologies, 8 (2), pp. 115-122. Cited 11 times. https://fbt.tums.ac.ir/index.php/fbt/article/view/302 doi: 10.18502/fbt.v8i2.6515http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdfScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdfapplication/pdf206805https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/1/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdff4a9268c46392412dd697c9e2bb2803dMD51TEXTScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.txtScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.txtExtracted texttext/plain2664https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/4/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.txtbab4da0d7a0f2eea74afbbcbed4c051bMD54THUMBNAILScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.jpgScopus - Document details - Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs.pdf.jpgGenerated Thumbnailimage/jpeg6345https://repositorio.utb.edu.co/bitstream/20.500.12585/12347/5/Scopus%20-%20Document%20details%20-%20Classification%20of%20Cognitive%20Evoked%20Potentials%20for%20ADHD%20Detection%20in%20Children%20using%20Recurrence%20Plots%20and%20CNNs.pdf.jpg5ffaa997b9ad7b4e3d864096743ba5adMD5520.500.12585/12347oai:repositorio.utb.edu.co:20.500.12585/123472023-07-22 00:17:47.391Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=