A flexible and simplified calibration procedure for fringe projection profilometry
Fringe Projection Profilometry (FPP) is a widely used technique for optical three-dimensional (3D) shape measurement. Among the existing 3D shape measurement techniques, FPP provides a whole-field 3D reconstruction of objects in a non-contact manner, with high resolution, and fast data processing. T...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9171
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9171
- Palabra clave:
- 3D shape measurement
Calibration
Fringe projection profilometry
Calibration
Data handling
Inverse problems
Mapping
Profilometry
Stereo image processing
Stereo vision
3-d shape measurement
Calibration procedure
Fringe projection profilometry
Low computational complexity
Reconstruction process
Simplified calibrations
Three dimensional (3 D) shape measurement
Triangulation principles
Image reconstruction
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6bb1766fe5e3e9d08495d8f27a2aa420 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9171 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A flexible and simplified calibration procedure for fringe projection profilometry |
title |
A flexible and simplified calibration procedure for fringe projection profilometry |
spellingShingle |
A flexible and simplified calibration procedure for fringe projection profilometry 3D shape measurement Calibration Fringe projection profilometry Calibration Data handling Inverse problems Mapping Profilometry Stereo image processing Stereo vision 3-d shape measurement Calibration procedure Fringe projection profilometry Low computational complexity Reconstruction process Simplified calibrations Three dimensional (3 D) shape measurement Triangulation principles Image reconstruction |
title_short |
A flexible and simplified calibration procedure for fringe projection profilometry |
title_full |
A flexible and simplified calibration procedure for fringe projection profilometry |
title_fullStr |
A flexible and simplified calibration procedure for fringe projection profilometry |
title_full_unstemmed |
A flexible and simplified calibration procedure for fringe projection profilometry |
title_sort |
A flexible and simplified calibration procedure for fringe projection profilometry |
dc.contributor.editor.none.fl_str_mv |
Bodermann B. Frenner K. |
dc.subject.keywords.none.fl_str_mv |
3D shape measurement Calibration Fringe projection profilometry Calibration Data handling Inverse problems Mapping Profilometry Stereo image processing Stereo vision 3-d shape measurement Calibration procedure Fringe projection profilometry Low computational complexity Reconstruction process Simplified calibrations Three dimensional (3 D) shape measurement Triangulation principles Image reconstruction |
topic |
3D shape measurement Calibration Fringe projection profilometry Calibration Data handling Inverse problems Mapping Profilometry Stereo image processing Stereo vision 3-d shape measurement Calibration procedure Fringe projection profilometry Low computational complexity Reconstruction process Simplified calibrations Three dimensional (3 D) shape measurement Triangulation principles Image reconstruction |
description |
Fringe Projection Profilometry (FPP) is a widely used technique for optical three-dimensional (3D) shape measurement. Among the existing 3D shape measurement techniques, FPP provides a whole-field 3D reconstruction of objects in a non-contact manner, with high resolution, and fast data processing. The key to accurate 3D shape measurement is the proper calibration of the measurement system. Currently, most calibration procedures in FPP rely on phase-coordinate mapping (PCM) or back-projection stereo-vision (SV) methods. The PCM technique consists in mapping experimental metric XYZ coordinates to recovered phase values by fitting a predetermined function. However, it requires accurately placing 2D or 3D targets at different distances and orientations. Conversely, in the SV method, the projector is regarded as an inverse camera, and the system is modeled using triangulation principles. Therefore, the calibration process can be carried out using 2D targets placed in arbitrary positions and orientations, resulting in a more flexible procedure. In this work, we propose a hybrid calibration procedure that combines SV and PCM methods. The procedure is highly flexible, robust to lens distortions, and has a simple relationship between phase and coordinates. Experimental results show that the proposed method has advantages over the conventional SV model since it needs fewer acquired images for the reconstruction process, and due to its low computational complexity the reconstruction time decreases significantly. © 2019 SPIE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:07Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:07Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11057 |
dc.identifier.isbn.none.fl_str_mv |
9781510627932 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9171 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2527607 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57117284600 24329839300 57192270016 36142156300 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11057 9781510627932 0277786X 10.1117/12.2527607 Universidad Tecnológica de Bolívar Repositorio UTB 57117284600 24329839300 57192270016 36142156300 |
url |
https://hdl.handle.net/20.500.12585/9171 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
24 June 2019 through 26 June 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072571081&doi=10.1117%2f12.2527607&partnerID=40&md5=b56098f8e33661496c853dc7e3cd7408 Scopus2-s2.0-85072571081 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
Modeling Aspects in Optical Metrology VII 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9171/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021679142141952 |
spelling |
Bodermann B.Frenner K.Vargas R.Marrugo A.G.Pineda J.Romero L.A.2020-03-26T16:33:07Z2020-03-26T16:33:07Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1105797815106279320277786Xhttps://hdl.handle.net/20.500.12585/917110.1117/12.2527607Universidad Tecnológica de BolívarRepositorio UTB57117284600243298393005719227001636142156300Fringe Projection Profilometry (FPP) is a widely used technique for optical three-dimensional (3D) shape measurement. Among the existing 3D shape measurement techniques, FPP provides a whole-field 3D reconstruction of objects in a non-contact manner, with high resolution, and fast data processing. The key to accurate 3D shape measurement is the proper calibration of the measurement system. Currently, most calibration procedures in FPP rely on phase-coordinate mapping (PCM) or back-projection stereo-vision (SV) methods. The PCM technique consists in mapping experimental metric XYZ coordinates to recovered phase values by fitting a predetermined function. However, it requires accurately placing 2D or 3D targets at different distances and orientations. Conversely, in the SV method, the projector is regarded as an inverse camera, and the system is modeled using triangulation principles. Therefore, the calibration process can be carried out using 2D targets placed in arbitrary positions and orientations, resulting in a more flexible procedure. In this work, we propose a hybrid calibration procedure that combines SV and PCM methods. The procedure is highly flexible, robust to lens distortions, and has a simple relationship between phase and coordinates. Experimental results show that the proposed method has advantages over the conventional SV model since it needs fewer acquired images for the reconstruction process, and due to its low computational complexity the reconstruction time decreases significantly. © 2019 SPIE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485The Society of Photo-Optical Instrumentation Engineers (SPIE)This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and R. Vargas thank Universidad Tecnológica de Bolívar for a post-graduate scholarship.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072571081&doi=10.1117%2f12.2527607&partnerID=40&md5=b56098f8e33661496c853dc7e3cd7408Scopus2-s2.0-85072571081Modeling Aspects in Optical Metrology VII 2019A flexible and simplified calibration procedure for fringe projection profilometryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3D shape measurementCalibrationFringe projection profilometryCalibrationData handlingInverse problemsMappingProfilometryStereo image processingStereo vision3-d shape measurementCalibration procedureFringe projection profilometryLow computational complexityReconstruction processSimplified calibrationsThree dimensional (3 D) shape measurementTriangulation principlesImage reconstruction24 June 2019 through 26 June 2019Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , IntechOpenGorthi, S.S., Rastogi, P., Fringe projection techniques: Whither we are? (2010) Optics and Lasers in Engi-Neering, 48 (2), pp. 133-140Cai, Z., Liu, X., Li, A., Tang, Q., Peng, X., Gao, B.Z., Phase-3d mapping method developed from back-projection stereovision model for fringe projection profilometry (2017) Optics Express, 25 (2), pp. 1262-1277Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3)Vo, M., Wang, Z., Hoang, T., Nguyen, D., Flexible calibration technique for fringe-projection-based three-dimensional imaging (2010) Optics Letters, 35 (19), pp. 3192-3194Huang, L., Chua, P.S., Asundi, A., Least-squares calibration method for fringe projection profilometry considering camera lens distortion (2010) Applied Optics, 49 (9), pp. 1539-1548Zhang, S., Huang, P.S., Novel method for structured light system calibration (2006) Optical Engineering, 45 (8), p. 083601Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Evaluating the inuence of camera and projector lens distortion in 3d reconstruction quality for fringe projection profilometry (2018) Imaging and Applied Optics 2018, , 3M3G.5, OSA, Washington, D.CPineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe quality map for fringe projection profilometry in LabVIEW (2018) Opt. Pura Apl., 51 (4), pp. 503021-503028Li, Z., Shi, Y., Wang, C., Wang, Y., Accurate calibration method for a structured light system (2008) Optical Engineering, 47 (5), p. 053604Luo, H., Xu, J., Binh, N.H., Liu, S., Zhang, C., Chen, K., A simple calibration procedure for structured light system (2014) Optics and Lasers in Engineering, 57, pp. 6-12Li, K., Bu, J., Zhang, D., Lens distortion elimination for improving measurement accuracy of fringe projection profilometry (2016) Optics and Lasers in Engineering, 85, pp. 53-64Bouguet, J.-Y., (2008) Camera Calibration Toolbox for Matlab (2008), , http://www.vision.caltech.edu/bouguetj/calibdoc1080Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., Convergence properties of the nelder-mead simplex method in low dimensions (1998) SIAM Journal on Optimization, 9 (1), pp. 112-147http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9171/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9171oai:repositorio.utb.edu.co:20.500.12585/91712021-02-02 15:29:52.213Repositorio Institucional UTBrepositorioutb@utb.edu.co |