Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks

One of the main factors contributing to water scarcity is water loss in water distribution systems, which mainly arises from a lack of adequate knowledge in the design process, optimization of water availability, and poor maintenance/management of the system. Thus, from the perspective of sustainabl...

Full description

Autores:
Ramos, Helena M.
Kuriqi, Alban
Besharat, Mohsen
Creaco, Enrico
Tasca, Elias
Coronado-Hernández, Oscar E.
Pienika, Rodolfo
Iglesias-Rey, Pedro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12109
Acceso en línea:
https://hdl.handle.net/20.500.12585/12109
Palabra clave:
Digital twin
Digital water
Smart water grids
Water losses
Water-energy nexus
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6b082cc10743f28e8784466e3026dbe4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12109
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
title Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
spellingShingle Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
Digital twin
Digital water
Smart water grids
Water losses
Water-energy nexus
title_short Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
title_full Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
title_fullStr Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
title_full_unstemmed Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
title_sort Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks
dc.creator.fl_str_mv Ramos, Helena M.
Kuriqi, Alban
Besharat, Mohsen
Creaco, Enrico
Tasca, Elias
Coronado-Hernández, Oscar E.
Pienika, Rodolfo
Iglesias-Rey, Pedro
dc.contributor.author.none.fl_str_mv Ramos, Helena M.
Kuriqi, Alban
Besharat, Mohsen
Creaco, Enrico
Tasca, Elias
Coronado-Hernández, Oscar E.
Pienika, Rodolfo
Iglesias-Rey, Pedro
dc.subject.keywords.spa.fl_str_mv Digital twin
Digital water
Smart water grids
Water losses
Water-energy nexus
topic Digital twin
Digital water
Smart water grids
Water losses
Water-energy nexus
description One of the main factors contributing to water scarcity is water loss in water distribution systems, which mainly arises from a lack of adequate knowledge in the design process, optimization of water availability, and poor maintenance/management of the system. Thus, from the perspective of sustainable and integrated management of water resources, it is essential to enhance system efficiency by monitoring existing system elements and enhancing network maintenance/management practices. The current study establishes a smart water grid (SWG) with a digital twin (DT) for a water infrastructure to improve monitoring, management, and system efficiency. Such a tool allows live monitoring of system components, which can analyze different scenarios and variables, such as pressures, operating devices, regulation of different valves, and head-loss factors. The current study explores a case study in which local constraints amplify significant water losses. It develops and examines the DT model’s application in the Gaula water distribution network (WDN) in Madeira Island, Portugal. The developed methodology resulted in a significant potential reduction in real water losses, which presented a huge value of 434,273 m3 (~80%) and significantly improved system efficiency. The result shows a meaningful economic benefit, with savings of about EUR 165k in water loss volume with limiting pressures above the regulatory maximum of 60 m w.c. after the district metered area (DMA) sectorization and the requalification of the network. Hence, only 40% of the total annual volume, concerning the status quo situation, is necessary to supply the demand. The infrastructure leakage index measures the existing real losses and the reduction potential, reaching a value of 21.15, much higher than the recommended value of 4, revealing the great potential for improving the system efficiency using the proposed methodology.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:12:58Z
dc.date.available.none.fl_str_mv 2023-07-18T19:12:58Z
dc.date.issued.none.fl_str_mv 2023-03-15
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12109
dc.identifier.doi.none.fl_str_mv 10.3390/w15061129
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129
10.3390/w15061129
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12109
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Water (Switzerland) - Vol. 15 No 6 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/1/water-15-01129.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/4/water-15-01129.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/5/water-15-01129.pdf.jpg
bitstream.checksum.fl_str_mv a691e9ee9df794d74537b0e2235f1c1a
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f4b2db4cb92ba23a9495023d9a83a922
16cc0fe8697b1ada2f4a0fdf5e1af162
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021739323064320
spelling Ramos, Helena M.55b0330e-7043-4bb2-8745-c564ce43175aKuriqi, Alban2b871c3e-4b28-4627-af98-3ec6f1ca4c11Besharat, Mohsen9bc60135-8166-40cd-9250-625e81504c7dCreaco, Enricocc291021-e23a-4d11-9d6c-1fd9539328f5Tasca, Eliasc5605aec-8ec6-4f6f-abbd-bf63e13f7b55Coronado-Hernández, Oscar E.f7a2fa8b-0bf4-4814-84e5-164c0b4b3c36Pienika, Rodolfo4100c24c-a0fe-42d5-b079-a2497648d181Iglesias-Rey, Pedroeed03d18-fb76-4306-9433-8a9d4d3ddd642023-07-18T19:12:58Z2023-07-18T19:12:58Z2023-03-152023-07Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129https://hdl.handle.net/20.500.12585/1210910.3390/w15061129Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOne of the main factors contributing to water scarcity is water loss in water distribution systems, which mainly arises from a lack of adequate knowledge in the design process, optimization of water availability, and poor maintenance/management of the system. Thus, from the perspective of sustainable and integrated management of water resources, it is essential to enhance system efficiency by monitoring existing system elements and enhancing network maintenance/management practices. The current study establishes a smart water grid (SWG) with a digital twin (DT) for a water infrastructure to improve monitoring, management, and system efficiency. Such a tool allows live monitoring of system components, which can analyze different scenarios and variables, such as pressures, operating devices, regulation of different valves, and head-loss factors. The current study explores a case study in which local constraints amplify significant water losses. It develops and examines the DT model’s application in the Gaula water distribution network (WDN) in Madeira Island, Portugal. The developed methodology resulted in a significant potential reduction in real water losses, which presented a huge value of 434,273 m3 (~80%) and significantly improved system efficiency. The result shows a meaningful economic benefit, with savings of about EUR 165k in water loss volume with limiting pressures above the regulatory maximum of 60 m w.c. after the district metered area (DMA) sectorization and the requalification of the network. Hence, only 40% of the total annual volume, concerning the status quo situation, is necessary to supply the demand. The infrastructure leakage index measures the existing real losses and the reduction potential, reaching a value of 21.15, much higher than the recommended value of 4, revealing the great potential for improving the system efficiency using the proposed methodology.22 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Water (Switzerland) - Vol. 15 No 6 (2023)Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Digital twinDigital waterSmart water gridsWater lossesWater-energy nexusCartagena de IndiasGiustolisi, O., Savic, D., Kapelan, Z. Pressure-driven demand and leakage simulation for water distribution networks (2008) Journal of Hydraulic Engineering, 134 (5), pp. 626-635. Cited 311 times. doi: 10.1061/(ASCE)0733-9429(2008)134:5(626)AL-Washali, T., Sharma, S., Kennedy, M. Methods of Assessment of Water Losses in Water Supply Systems: a Review (2016) Water Resources Management, 30 (14), pp. 4985-5001. Cited 50 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1503-7Hommes, L., Boelens, R. Urbanizing rural waters: Rural-urban water transfers and the reconfiguration of hydrosocial territories in Lima (2017) Political Geography, 57, pp. 71-80. Cited 91 times. http://www.elsevier.com/inca/publications/store/3/0/4/6/5/index.htt doi: 10.1016/j.polgeo.2016.12.002Ishiwatari, Y., Mishima, I., Utsuno, N., Fujita, M. Diagnosis of the ageing of water pipe systems by water quality and structure of iron corrosion in supplied water (2013) Water Science and Technology: Water Supply, 13 (1), pp. 178-183. Cited 8 times. http://www.iwaponline.com/ws/01301/0178/013010178.pdf doi: 10.2166/ws.2013.006Rokstad, M.M., Ugarelli, R.M. Minimising the total cost of renewal and risk of water infrastructure assets by grouping renewal interventions (2015) Reliability Engineering and System Safety, 142, pp. 148-160. Cited 21 times. doi: 10.1016/j.ress.2015.05.014Ociepa, E., Mrowiec, M., Deska, I. Analysis of water losses and assessment of initiatives aimed at their reduction in selected water supply systems (2019) Water (Switzerland), 11 (5), art. no. 1037. Cited 25 times. https://res.mdpi.com/water/water-11-01037/article_deploy/water-11-01037.pdf?filename=&attachment=1 doi: 10.3390/w11051037Lambert, A.O., Brown, T.G., Takizawa, M., Weimer, D. A review of performance indicators for real losses from water supply systems (1999) Journal of Water Supply: Research and Technology - AQUA, 48 (6), pp. 227-237. Cited 158 times. http://www.iwaponline.com/jws/default.htm doi: 10.2166/aqua.1999.0025Abansi, C.L., Hall, R.A., Siason, I.M.L. Water demand management and improving access to water (Open Access) (2018) Global Issues in Water Policy, 8, pp. 233-259. Cited 3 times. springer.com/series/8877 doi: 10.1007/978-3-319-70969-7_11Ramos, H.M., Morani, M.C., Carravetta, A., Fecarrotta, O., Adeyeye, K., López-Jiménez, P.A., Pérez-Sánchez, M. New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks (2022) Water (Switzerland), 14 (8), art. no. 1304. Cited 11 times. https://www.mdpi.com/2073-4441/14/8/1304/pdf doi: 10.3390/w14081304Arregui, F.J., Cobacho, R., Soriano, J., Jimenez-Redal, R. Calculation proposal for the economic level of apparent losses (ELAL) in a water supply system (Open Access) (2018) Water (Switzerland), 10 (12), art. no. 1809. Cited 13 times. https://www.mdpi.com/2073-4441/10/12/1809/pdf doi: 10.3390/w10121809Fabbiano, L., Vacca, G., Dinardo, G. Smart water grid: A smart methodology to detect leaks in water distribution networks (Open Access) (2020) Measurement: Journal of the International Measurement Confederation, 151, art. no. 107260. Cited 22 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2019.107260Ramos, H.M., McNabola, A., López-Jiménez, P.A., Pérez-Sánchez, M. Smart water management towards future water sustainable networks (Open Access) (2020) Water (Switzerland), 12 (1), art. no. 58. Cited 58 times. https://res.mdpi.com/d_attachment/water/water-12-00058/article_deploy/water-12-00058.pdf doi: 10.3390/w12010058Alzamora, F.M., Carot, M.H., Carles, J., Campos, A. Development and Use of a Digital Twin for the Water Supply and Distribution Network of Valencia (Spain) Proceedings of the 17th International Computing & Control for the Water Industry Conference. Cited 2 times. Exeter, UK, 1–4 September 2019Germanopoulos, G., Jowitt, P.W. Leakage reduction by excess pressure minimization in a water supply network (Open Access) (1989) Proceedings - Institution of Civil Engineers. Part 2. Research and theory, 87, pp. 195-214. Cited 91 times.Galdiero, E., De Paola, F., Fontana, N., Giugni, M., Savic, D. Decision support system for the optimal design of district metered areas (2016) Journal of Hydroinformatics, 18 (1), pp. 49-61. Cited 39 times. http://jh.iwaponline.com/content/ppiwajhydro/18/1/49.full.pdf doi: 10.2166/hydro.2015.023Curl, J.M., Nading, T., Hegger, K., Barhoumi, A., Smoczynski, M. Digital Twins: The Next Generation of Water Treatment Technology (Open Access) (2019) Journal - American Water Works Association, 111 (12), pp. 44-50. Cited 18 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1551-8833 doi: 10.1002/awwa.1413Conejos Fuertes, P., Martínez Alzamora, F., Hervás Carot, M., Alonso Campos, J.C. Building and exploiting a Digital Twin for the management of drinking water distribution networks (Open Access) (2020) Urban Water Journal, 17 (8), pp. 704-713. Cited 57 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1771382Eggimann, S., Mutzner, L., Wani, O., Schneider, M.Y., Spuhler, D., Moy De Vitry, M., Beutler, P., (...), Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management (Open Access) (2017) Environmental Science and Technology, 51 (5), pp. 2538-2553. Cited 145 times. http://pubs.acs.org/journal/esthag doi: 10.1021/acs.est.6b04267Mekonnen, M.M., Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity (2016) Science Advances, 2 (2), art. no. e1500323. Cited 2481 times. http://advances.sciencemag.org/content/advances/2/2/e1500323.full.pdf doi: 10.1126/sciadv.1500323Bauer, P., Stevens, B., Hazeleger, W. A digital twin of Earth for the green transition (2021) Nature Climate Change, 11 (2), pp. 80-83. Cited 98 times. http://www.nature.com/nclimate/index.html doi: 10.1038/s41558-021-00986-yXiang, X., Li, Q., Khan, S., Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques (Open Access) (2021) Environmental Impact Assessment Review, 86, art. no. 106515. Cited 163 times. www.elsevier.com/inca/publications/store/5/0/5/7/1/8 doi: 10.1016/j.eiar.2020.106515Manny, L. Socio-technical challenges towards data-driven and integrated urban water management: A socio-technical network approach (2023) Sustainable Cities and Society, 90, art. no. 104360. Cited 4 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2022.104360Available online https://apambiente.pt/agua/plano-estrategico-de-abastecimento-de-agua-e-saneamento-de-aguas-residuais-2020http://purl.org/coar/resource_type/c_6501ORIGINALwater-15-01129.pdfwater-15-01129.pdfapplication/pdf6833527https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/1/water-15-01129.pdfa691e9ee9df794d74537b0e2235f1c1aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTwater-15-01129.pdf.txtwater-15-01129.pdf.txtExtracted texttext/plain76858https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/4/water-15-01129.pdf.txtf4b2db4cb92ba23a9495023d9a83a922MD54THUMBNAILwater-15-01129.pdf.jpgwater-15-01129.pdf.jpgGenerated Thumbnailimage/jpeg7914https://repositorio.utb.edu.co/bitstream/20.500.12585/12109/5/water-15-01129.pdf.jpg16cc0fe8697b1ada2f4a0fdf5e1af162MD5520.500.12585/12109oai:repositorio.utb.edu.co:20.500.12585/121092023-07-19 00:19:19.187Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=