Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8917
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8917
- Palabra clave:
- Direct-current power grids
Iterative numerical methods
Power flow analysis
Successive approximations
Taylor's series expansion
Electric power transmission networks
Linearization
MATLAB
Newton-Raphson method
Nonlinear equations
Numerical methods
Direct current power
Iterative numerical method
Power flow analysis
Successive approximations
Taylor's series expansion
Electric load flow
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6a32db00e431528cf396f0c2cb6e13db |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8917 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
title |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
spellingShingle |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods Direct-current power grids Iterative numerical methods Power flow analysis Successive approximations Taylor's series expansion Electric power transmission networks Linearization MATLAB Newton-Raphson method Nonlinear equations Numerical methods Direct current power Iterative numerical method Power flow analysis Successive approximations Taylor's series expansion Electric load flow |
title_short |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
title_full |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
title_fullStr |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
title_full_unstemmed |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
title_sort |
Power Flow Analysis in DC Grids: Two Alternative Numerical Methods |
dc.subject.keywords.none.fl_str_mv |
Direct-current power grids Iterative numerical methods Power flow analysis Successive approximations Taylor's series expansion Electric power transmission networks Linearization MATLAB Newton-Raphson method Nonlinear equations Numerical methods Direct current power Iterative numerical method Power flow analysis Successive approximations Taylor's series expansion Electric load flow |
topic |
Direct-current power grids Iterative numerical methods Power flow analysis Successive approximations Taylor's series expansion Electric power transmission networks Linearization MATLAB Newton-Raphson method Nonlinear equations Numerical methods Direct current power Iterative numerical method Power flow analysis Successive approximations Taylor's series expansion Electric load flow |
description |
This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventional fixed point form, generating a successive approximation methodology. The second approach is based on Taylors series expansion method by using a set of decoupling equations to linearize the problem around the desired operating point; these linearized equations are recursively solved until reach the solution of the power flow problem with minimum error. These two approaches are comparable to the classical Gauss-Seidel method and the classical Newton-Raphson method, respectively. Simulation results show that the proposed approaches have a better performance in terms of solution precision and computational requirements. All the simulations were conducted via MATLAB software by using its programming interface. © 2004-2012 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-1869 |
dc.identifier.issn.none.fl_str_mv |
15497747 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8917 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TCSII.2019.2891640 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57208126635 57191493648 55791991200 |
identifier_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-1869 15497747 10.1109/TCSII.2019.2891640 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57208126635 57191493648 55791991200 |
url |
https://hdl.handle.net/20.500.12585/8917 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074505358&doi=10.1109%2fTCSII.2019.2891640&partnerID=40&md5=02a5111e3af34b181c5cf20a2a9af85b |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8917/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021564856795136 |
spelling |
2020-03-26T16:32:36Z2020-03-26T16:32:36Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-186915497747https://hdl.handle.net/20.500.12585/891710.1109/TCSII.2019.2891640Universidad Tecnológica de BolívarRepositorio UTB56919564100572081266355719149364855791991200This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventional fixed point form, generating a successive approximation methodology. The second approach is based on Taylors series expansion method by using a set of decoupling equations to linearize the problem around the desired operating point; these linearized equations are recursively solved until reach the solution of the power flow problem with minimum error. These two approaches are comparable to the classical Gauss-Seidel method and the classical Newton-Raphson method, respectively. Simulation results show that the proposed approaches have a better performance in terms of solution precision and computational requirements. All the simulations were conducted via MATLAB software by using its programming interface. © 2004-2012 IEEE.Universidad Nacional de Colombia, UN 727-2015 Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI P17211Manuscript received October 9, 2018; revised December 10, 2018; accepted January 5, 2019. Date of publication January 9, 2019; date of current version November 1, 2019. This work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Universidad Nacional de Colombia, in part by the Instituto Tecnológico Metropolitano under Project P17211, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020. This brief was recommended by Associate Editor H. H.-C. Iu. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya and V. M. Garrido are with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: omontoya@utb.edu.co; vgarrido@utb.edu.co).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074505358&doi=10.1109%2fTCSII.2019.2891640&partnerID=40&md5=02a5111e3af34b181c5cf20a2a9af85bPower Flow Analysis in DC Grids: Two Alternative Numerical Methodsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct-current power gridsIterative numerical methodsPower flow analysisSuccessive approximationsTaylor's series expansionElectric power transmission networksLinearizationMATLABNewton-Raphson methodNonlinear equationsNumerical methodsDirect current powerIterative numerical methodPower flow analysisSuccessive approximationsTaylor's series expansionElectric load flowMontoya O.D.Garrido Arévalo, Víctor ManuelGil-González, WalterGrisales-Noreña L.F.Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Stor, 21, pp. 1-8. , FebKarimipour, D., Salmasi, F.R., Stability analysis of ac microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , JulRadwan, A.A.A., Mohamed, Y.A.-R.I., Linear active stabilization of converter-dominated dc microgrids (2012) IEEE Trans. Smart Grid, 3 (1), pp. 203-216. , MarParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Garcés, A., On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Trans. Power Syst, 33 (5), pp. 5770-5777. , SepSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res, 151, pp. 149-153. , OctGarces, A., Montoya, D., Torres, R., Optimal power flow in multi-terminal hvdc systems considering dc/dc converters (2016) Proc. IEEE 25th Int. Symp. Ind. Electron. ISIE, pp. 1212-1217. , Santa Clara, ca, usa, JunLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst, 33 (5), pp. 5496-5506. , SepChusovitin, P., Pazderin, A., Shabalin, G., Tashchilin, V., Bannykh, P., Voltage stability analysis using Newton method (2015) Proc. IEEE Eindhoven PowerTech, pp. 1-7. , Eindhoven, The Netherlands, JunAprilia, E., Meng, K., Hosani, M.A., Zeineldin, H.H., Dong, Z.Y., Unified power flow algorithm for standalone ac/dc hybrid microgrids (2017) IEEE Trans. Smart Grid, 10 (1), pp. 639-649. , JanMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an sdp model IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609, [Online]Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst, 31 (1), pp. 827-828. , JanBarabanov, N., Ortega, R., Griño, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A., Linear power flow formulation for low-voltage dc power grids (2018) Electric Power Syst. Res, 163, pp. 375-381. , OctSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on dc microgrids: A quadratic convex approximation IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609, [Online]Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the opf problem in dc grids (2019) Electric Power Syst. Res, 169, pp. 18-23. , https://doi.org/10.1016/j.epsr.2018.12.008, Apr, [Online]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8917/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8917oai:repositorio.utb.edu.co:20.500.12585/89172023-05-26 11:06:36.641Repositorio Institucional UTBrepositorioutb@utb.edu.co |