Power Flow Analysis in DC Grids: Two Alternative Numerical Methods

This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8917
Acceso en línea:
https://hdl.handle.net/20.500.12585/8917
Palabra clave:
Direct-current power grids
Iterative numerical methods
Power flow analysis
Successive approximations
Taylor's series expansion
Electric power transmission networks
Linearization
MATLAB
Newton-Raphson method
Nonlinear equations
Numerical methods
Direct current power
Iterative numerical method
Power flow analysis
Successive approximations
Taylor's series expansion
Electric load flow
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6a32db00e431528cf396f0c2cb6e13db
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8917
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
title Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
spellingShingle Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
Direct-current power grids
Iterative numerical methods
Power flow analysis
Successive approximations
Taylor's series expansion
Electric power transmission networks
Linearization
MATLAB
Newton-Raphson method
Nonlinear equations
Numerical methods
Direct current power
Iterative numerical method
Power flow analysis
Successive approximations
Taylor's series expansion
Electric load flow
title_short Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
title_full Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
title_fullStr Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
title_full_unstemmed Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
title_sort Power Flow Analysis in DC Grids: Two Alternative Numerical Methods
dc.subject.keywords.none.fl_str_mv Direct-current power grids
Iterative numerical methods
Power flow analysis
Successive approximations
Taylor's series expansion
Electric power transmission networks
Linearization
MATLAB
Newton-Raphson method
Nonlinear equations
Numerical methods
Direct current power
Iterative numerical method
Power flow analysis
Successive approximations
Taylor's series expansion
Electric load flow
topic Direct-current power grids
Iterative numerical methods
Power flow analysis
Successive approximations
Taylor's series expansion
Electric power transmission networks
Linearization
MATLAB
Newton-Raphson method
Nonlinear equations
Numerical methods
Direct current power
Iterative numerical method
Power flow analysis
Successive approximations
Taylor's series expansion
Electric load flow
description This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventional fixed point form, generating a successive approximation methodology. The second approach is based on Taylors series expansion method by using a set of decoupling equations to linearize the problem around the desired operating point; these linearized equations are recursively solved until reach the solution of the power flow problem with minimum error. These two approaches are comparable to the classical Gauss-Seidel method and the classical Newton-Raphson method, respectively. Simulation results show that the proposed approaches have a better performance in terms of solution precision and computational requirements. All the simulations were conducted via MATLAB software by using its programming interface. © 2004-2012 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-1869
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8917
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2019.2891640
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57208126635
57191493648
55791991200
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-1869
15497747
10.1109/TCSII.2019.2891640
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57208126635
57191493648
55791991200
url https://hdl.handle.net/20.500.12585/8917
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074505358&doi=10.1109%2fTCSII.2019.2891640&partnerID=40&md5=02a5111e3af34b181c5cf20a2a9af85b
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8917/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021564856795136
spelling 2020-03-26T16:32:36Z2020-03-26T16:32:36Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 11; pp. 1865-186915497747https://hdl.handle.net/20.500.12585/891710.1109/TCSII.2019.2891640Universidad Tecnológica de BolívarRepositorio UTB56919564100572081266355719149364855791991200This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventional fixed point form, generating a successive approximation methodology. The second approach is based on Taylors series expansion method by using a set of decoupling equations to linearize the problem around the desired operating point; these linearized equations are recursively solved until reach the solution of the power flow problem with minimum error. These two approaches are comparable to the classical Gauss-Seidel method and the classical Newton-Raphson method, respectively. Simulation results show that the proposed approaches have a better performance in terms of solution precision and computational requirements. All the simulations were conducted via MATLAB software by using its programming interface. © 2004-2012 IEEE.Universidad Nacional de Colombia, UN 727-2015 Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI P17211Manuscript received October 9, 2018; revised December 10, 2018; accepted January 5, 2019. Date of publication January 9, 2019; date of current version November 1, 2019. This work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Universidad Nacional de Colombia, in part by the Instituto Tecnológico Metropolitano under Project P17211, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020. This brief was recommended by Associate Editor H. H.-C. Iu. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya and V. M. Garrido are with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: omontoya@utb.edu.co; vgarrido@utb.edu.co).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074505358&doi=10.1109%2fTCSII.2019.2891640&partnerID=40&md5=02a5111e3af34b181c5cf20a2a9af85bPower Flow Analysis in DC Grids: Two Alternative Numerical Methodsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct-current power gridsIterative numerical methodsPower flow analysisSuccessive approximationsTaylor's series expansionElectric power transmission networksLinearizationMATLABNewton-Raphson methodNonlinear equationsNumerical methodsDirect current powerIterative numerical methodPower flow analysisSuccessive approximationsTaylor's series expansionElectric load flowMontoya O.D.Garrido Arévalo, Víctor ManuelGil-González, WalterGrisales-Noreña L.F.Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Stor, 21, pp. 1-8. , FebKarimipour, D., Salmasi, F.R., Stability analysis of ac microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , JulRadwan, A.A.A., Mohamed, Y.A.-R.I., Linear active stabilization of converter-dominated dc microgrids (2012) IEEE Trans. Smart Grid, 3 (1), pp. 203-216. , MarParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Garcés, A., On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Trans. Power Syst, 33 (5), pp. 5770-5777. , SepSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res, 151, pp. 149-153. , OctGarces, A., Montoya, D., Torres, R., Optimal power flow in multi-terminal hvdc systems considering dc/dc converters (2016) Proc. IEEE 25th Int. Symp. Ind. Electron. ISIE, pp. 1212-1217. , Santa Clara, ca, usa, JunLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst, 33 (5), pp. 5496-5506. , SepChusovitin, P., Pazderin, A., Shabalin, G., Tashchilin, V., Bannykh, P., Voltage stability analysis using Newton method (2015) Proc. IEEE Eindhoven PowerTech, pp. 1-7. , Eindhoven, The Netherlands, JunAprilia, E., Meng, K., Hosani, M.A., Zeineldin, H.H., Dong, Z.Y., Unified power flow algorithm for standalone ac/dc hybrid microgrids (2017) IEEE Trans. Smart Grid, 10 (1), pp. 639-649. , JanMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an sdp model IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609, [Online]Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst, 31 (1), pp. 827-828. , JanBarabanov, N., Ortega, R., Griño, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A., Linear power flow formulation for low-voltage dc power grids (2018) Electric Power Syst. Res, 163, pp. 375-381. , OctSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on dc microgrids: A quadratic convex approximation IEEE Trans. Circuits Syst. II, Exp. Briefs, to Be Published, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609, [Online]Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the opf problem in dc grids (2019) Electric Power Syst. Res, 169, pp. 18-23. , https://doi.org/10.1016/j.epsr.2018.12.008, Apr, [Online]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8917/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8917oai:repositorio.utb.edu.co:20.500.12585/89172023-05-26 11:06:36.641Repositorio Institucional UTBrepositorioutb@utb.edu.co