Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific co...
- Autores:
-
Rios a, Y. Yuliana
García Rodríguez, J. A.
Sanchez c, Edgar N.
Alanis, Alma Y.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10420
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10420
https://doi.org/10.1016/j.isatra.2021.07.045
- Palabra clave:
- Recurrent neural network
Fuzzy inference
Uva/Padova simulator
Neural multi-step predictor
Diabetes Mellitus
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_69b7eaa79fcafb3cb3330c38d9472a26 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10420 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
title |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
spellingShingle |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction Recurrent neural network Fuzzy inference Uva/Padova simulator Neural multi-step predictor Diabetes Mellitus LEMB |
title_short |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
title_full |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
title_fullStr |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
title_full_unstemmed |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
title_sort |
Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction |
dc.creator.fl_str_mv |
Rios a, Y. Yuliana García Rodríguez, J. A. Sanchez c, Edgar N. Alanis, Alma Y. |
dc.contributor.author.none.fl_str_mv |
Rios a, Y. Yuliana García Rodríguez, J. A. Sanchez c, Edgar N. Alanis, Alma Y. |
dc.subject.keywords.spa.fl_str_mv |
Recurrent neural network Fuzzy inference Uva/Padova simulator Neural multi-step predictor Diabetes Mellitus |
topic |
Recurrent neural network Fuzzy inference Uva/Padova simulator Neural multi-step predictor Diabetes Mellitus LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi–Sugeno (T–S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T–S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient’s condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70–115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-07-30 |
dc.date.accessioned.none.fl_str_mv |
2022-01-28T20:02:15Z |
dc.date.available.none.fl_str_mv |
2022-01-28T20:02:15Z |
dc.date.submitted.none.fl_str_mv |
2022-01-27 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Y.Y. Rios, J.A. García-Rodríguez, E.N. Sanchez et al., Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions (2021), https://doi.org/10.1016/j.isatra.2021.07.045. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10420 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.isatra.2021.07.045 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Y.Y. Rios, J.A. García-Rodríguez, E.N. Sanchez et al., Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions (2021), https://doi.org/10.1016/j.isatra.2021.07.045. Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10420 https://doi.org/10.1016/j.isatra.2021.07.045 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
10 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
ISA Transactions |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/1/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/4/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/5/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdf.jpg |
bitstream.checksum.fl_str_mv |
a378d6be49512227b1a3d59c8465612a 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 394a5a215cd90810fe567be6dfce5467 1221550ce7b4a291993287207976f6a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021593911787520 |
spelling |
Rios a, Y. Yuliana21831cb7-12a3-4d2c-9576-3040e4d0c947García Rodríguez, J. A.66fb6c6d-c6df-498c-9e12-85c5a06389a3Sanchez c, Edgar N.62704aac-d07c-4525-a914-fd558012929aAlanis, Alma Y.e3a9155e-04ad-4ce3-972e-03923c3305be2022-01-28T20:02:15Z2022-01-28T20:02:15Z2021-07-302022-01-27Y.Y. Rios, J.A. García-Rodríguez, E.N. Sanchez et al., Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions (2021), https://doi.org/10.1016/j.isatra.2021.07.045.https://hdl.handle.net/20.500.12585/10420https://doi.org/10.1016/j.isatra.2021.07.045Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDiabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi–Sugeno (T–S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T–S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient’s condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70–115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation10 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ISA TransactionsTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step predictioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Recurrent neural networkFuzzy inferenceUva/Padova simulatorNeural multi-step predictorDiabetes MellitusLEMBCartagena de IndiasControl TD, Group CTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329(14):977–86. http://dx.doi.org/10. 1056/NEJM199309303291401Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837–53. http://dx.doi.org/10.1016/S0140-6736(98)07019-6.DeFronzo R, Ferrannini E, Alberti K, Zimmet P. The classification and diagnosis of diabetes mellitus. In: Sons JW&, editor. International textbook of diabetes mellitus. 4th ed. New Jersey, Middle Atlantic, U.S.: John Wiley & Sons; 2015, p. 24–30. http://dx.doi.org/10.1002/9781118387658, [Ch. 1].DeFronzo RA. Epidemiology and risk factors for type 1 diabetes mellitus. In: Sons JW&, editor. International textbook of diabetes mellitus. 4th ed. Oxford, U.K.: John Wiley & Sons; 2015, p. 17–28. http://dx.doi.org/10. 1002/9781118387658, [Ch. 2].] Majithia AR, Wiltschko AB, Zheng H, Walford GA, Nathan DM. Rate of change of premeal glucose measured by continuous glucose monitoring predicts postmeal glycemic excursions in patients with type 1 diabetes: Implications for therapy. J Diabetes Sci Technol 2018;12(1):76–82. http: //dx.doi.org/10.1177/1932296817725756Hovorka R. Continuous glucose monitoring and closed-loop systems. In: Diabetic medicine. Cambridge, Massachusetts, U.S.: Wiley Online Library; 2006, p. 12. http://dx.doi.org/10.1111/j.1464-5491.2005.01672.xKux L. Guidance for industry and food and drug administration staff; the content of investigational device exemption and premarket approval applications for artificial pancreas device systems; availability. Fed Regist 2012;77(226):1–63.Messori M, Paolo Incremona G, Cobelli C, Magni L. Individualized model predictive control for the artificial pancreas: In silico evaluation of closedloop glucose control. IEEE Control Syst 2018;38(1):86–104. http://dx.doi. org/10.1109/MCS.2017.2766314Magni L, Forgione M, Toffanin C, Dalla Man C, Kovatchev B, De Nicolao G, et al. Run-to-run tuning of model predictive control for type 1 diabetes subjects: In silico trial. J Diabetes Sci Technol 2009;3(5):1091–8. http: //dx.doi.org/10.1177/193229680900300512.Messori M, Ellis M, Cobelli C, Christofides PD, Magni L. Improved postprandial glucose control with a customized Model Predictive Controller. In: Proceedings of the american control conference. p. 5108–15. http: //dx.doi.org/10.1109/ACC.2015.7172136.Gondhalekar R, Dassau E, Doyle FJ. Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM. In: Proceedings of the american control conference. p. 1635–40. http://dx.doi.org/10.1109/ACC.2015.7170967Ortmann L, Shi D, Dassau E, Doyle FJ, Leonhardt S, Misgeld BJ. Gaussian process-based model predictive control of blood glucose for patients with type 1 diabetes mellitus. In: 2017 asian control conference. p. 1092–7. http://dx.doi.org/10.1109/ASCC.2017.8287323.Resalat N, Youssef JE, Reddy R, Jacobs PG. Design of a dual-hormone model predictive control for artificial pancreas with exercise model. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society. p. 2270–3. http://dx.doi.org/10.1109/ EMBC.2016.7591182Tang F, Wang Y. Design of Bi-hormonal artificial pancreas system using switching economic model predictive control. In: Chinese control conference. p. 4579–84. http://dx.doi.org/10.23919/ChiCC.2017.8028078Wang Q, Xie J, Molenaar P, Ulbrecht J. Model predictive control for type 1 diabetes based on personalized linear time-varying subject model consisting of both insulin and meal inputs: In Silico evaluation. In: Proceedings of the american control conference. p. 5782–7. http://dx.doi.org/10.1109/ ACC.2015.7172245.Colmegna P, Sanchez-Pena RS, Gondhalekar R. Control-oriented Linear Parameter-Varying model for glucose control in Type 1 Diabetes. In: IEEE conference on control applications. p. 410–5. http://dx.doi.org/10.1109/cca. 2016.7587865Patek SD, Magni L, Dassau E, Hughes-Karvetski C, Toffanin C, De Nicolao G, et al. Modular closed-loop control of diabetes. IEEE Trans Biomed Eng 2012;59(11):2986–99. http://dx.doi.org/10.1109/TBME.2012.2192930.Galadanci J, Shafik RA, Mathew J, Acharyya A, Pradhan DK. A closedloop control strategy for glucose control in artificial pancreas systems. In: Proceedings - 2012 international symposium on electronic system design. p. 295–9. http://dx.doi.org/10.1109/ISED.2012.76.Kovacs L, Szalay P, Benyo B, Chase GJ. Asymptotic output tracking in blood glucose control. A case study. In: Proceedings of the IEEE conference on decision and control. p. 59–64. http://dx.doi.org/10.1109/CDC.2011. 6161400.] Leon BS, Alanis AY, Sanchez EN, Ornelas-Tellez F, Ruiz-Velazquez E. Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integr Circuits Signal Process 2013;76(3):343–52. http://dx.doi.org/ 10.1007/s10470-013-0109-8.Rios YY, García-Rodríguez JA, Sánchez OD, Sanchez EN, Alanis AY, RuizVelázquez E, Arana-Daniel N. Inverse optimal control using a neural multi-step predictor for T1DM treatment. In: Proceedings of the international joint conference on neural networks. p. 1–8. http://dx.doi.org/10. 1109/IJCNN.2018.8489197.Karahoca A, Karahoca D, Kara A. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems. In: 2009 fifth international conference on soft computing, computing with words and perceptions in system analysis, decision and control. p. 1–4. http://dx.doi.org/10.1109/ICSCCW. 2009.5379497.Geman O, Chiuchisan I, Toderean R. Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction. In: 2017 Ehealth and bioengineering conference. p. 639–42. http://dx.doi.org/10. 1109/EHB.2017.7995505] Lekkas S, Mikhailov L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artif Intell Med 2010;50(2):117–26. http://dx.doi.org/10.1016/j.artmed.2010.05.007.Nath A, Dey R, Balas VE. Closed loop blood glucose regulation of type 1 diabetic patient using takagi-sugeno fuzzy logic control. In: Advances in intelligent systems and computing. Cham, Switzerland: Springer; 2018, p. 286–96. http://dx.doi.org/10.1007/978-3-319-62524-9_23.Alanis AY, Sanchez EN, Loukianov AG. Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Trans Neural Netw 2007;18(4):1185–95. http://dx.doi.org/10.1109/TNN.2007.899170.Quintero-Manriquez E, Sanchez EN, Harley RG, Li S, Felix RA. Neural sliding mode control for induction motors using rapid control prototyping. IFACPapersOnLine 2017;50(1):9625–30. http://dx.doi.org/10.1016/j.ifacol.2017. 08.1711.Rovithakis GA, Christodoulou MA. Adaptive control with recurrent highorder neural networks: Theory and industrial applications. London, USanchez EN, Alanis AY, Loukianov AG. Discrete-time high order neural control: trained with Kalman filtering, vol. 112. Berlin, Germany: Springer Science & Business Media; 2008, p. 116. http://dx.doi.org/10.1109/MCS. 2017.2766321.Sanchez EN, Ornelas-Tellez F. Discrete-time inverse optimal control for nonlinear systems. Boca Raton, Florida, U.S.: CRC Press; 2013, p. 268. http://dx.doi.org/10.1201/b14779Li W, Todorov E, Liu D. Inverse optimality design for biological movement systems. IFAC Proc Vol 2011;44(1):9662–7. http://dx.doi.org/10.3182/ 20110828-6-IT-1002.00877] Freeman RA, Kokotović P. Robust nonlinear control design. Boston, Massachusetts, U.S.: Birkhäuser; 2009, p. 255. http://dx.doi.org/10.1007/978- 0-8176-4759-9.Ornelas F, Sanchez EN, Loukianov AG. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach. In: Proceedings of the IEEE international conference on control applications. p. 1431–6. http://dx.doi.org/10.1109/CCA.2011.6044461.Ornelas-Tellez F, Sanchez EN, Loukianov AG, Navarro-Lopez EM. Speedgradient inverse optimal control for discrete-time nonlinear systems. In: Proceedings of the IEEE conference on decision and control. p. 290–5. http://dx.doi.org/10.1109/CDC.2011.6160374.Kirk DE. Optimal control theory: an introduction. springer-v ed. Englewood Cliffs, New Jersey, U.S.: Prentice-Hall; 1970, p. 564. http://dx.doi.org/10. 1007/978-3-319-98237-3.Basar T, Olsder GJ. Dynamic noncooperative game theory. 2nd ed. Philadelphia, Pennsylvania, U.S.: Society for Industrial and Applied Mathematics; 1999, p. 526. http://dx.doi.org/10.1137/1.9781611971132Ohsawa T, Bloch AM, Leok M. Discrete Hamilton–Jacobi theory and discrete optimal control. In: Proceedings of the IEEE conference on decision and control. p. 5438–43. http://dx.doi.org/10.1109/CDC.2010.5717665.Al-Tamimi A, Lewis F, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Trans Syst Man Cybern B 2008;38(4):943–9. http://dx.doi.org/10.1109/TSMCB. 2008.926614] Kovatchev BP, Breton M, Dalla Man C, Cobelli C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009;3(1):44–55. http://dx.doi.org/10.1177/193229680900300106Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The UVA/PADOVA type 1 diabetes simulator. J Diabetes Sci Technol 2014;8(1):26–34. http://dx.doi.org/10.1177/1932296813514502.Chang FJ, Chiang YM, Chang LC. Multi-step-ahead neural networks for flood forecasting. Hydrol Sci J 2010;52(1):114–30. http://dx.doi.org/10.1623/hysj. 52.1.114.Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1985;SMC-15(1):116–32. http://dx.doi.org/10.1109/TSMC.1985.6313399.Lopes Souto D, Lopes Rosado E. Use of carb counting in the dietary treatment of diabetes mellitus. Nutr Hosp 2010;25(1):18–25. http://dx.doi. org/10.3305/nh.2010.25.1.4324.] Institute of Medicine. Summary tables, dietary reference intakes. In: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C., U.S.: Elsevier; 2005, p. 1319–31. http://dx.doi.org/10.17226/10490, [Ch. Summary Ta]. [45] Previato* HDRdA. Carbohydrate counting in diabetes. Nutr Food TechnolAmerican Diabetes Association PS. Nutrition recommendations and interventions for diabetes - a position statement. Diabetes Care 2008;31(1):S61–78. http://dx.doi.org/10.2337/dc08-S061.Association AD, et al. All about carbohydrate counting. American Diabetes Association; 2009, URL https://professional.diabetes.org/sites/professional. diabetes.org/files/media/All_About_Carbohydrate_Counting.pdfCinar A. Artificial pancreas systems: An introduction to the special issue. IEEE Control Syst Mag 2018;38(1):26–9. http://dx.doi.org/10.1109/MCS. 2017.2766321.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdf1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdfapplication/pdf1103736https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/1/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdfa378d6be49512227b1a3d59c8465612aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdf.txt1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdf.txtExtracted texttext/plain51778https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/4/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdf.txt394a5a215cd90810fe567be6dfce5467MD54THUMBNAIL1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdf.jpg1-s2.0-S0019057821004122-main_Yennifer Yuliana Rio.pdf.jpgGenerated Thumbnailimage/jpeg117892https://repositorio.utb.edu.co/bitstream/20.500.12585/10420/5/1-s2.0-S0019057821004122-main_Yennifer%20Yuliana%20Rio.pdf.jpg1221550ce7b4a291993287207976f6a6MD5520.500.12585/10420oai:repositorio.utb.edu.co:20.500.12585/104202023-05-26 10:11:21.135Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |