A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve
Filling and emptying operations should be planned by engineers in operational stages to prevent a system failure depending on reaching extreme low pressure values. In this sense, a compression of an air pocket produces pressure surges, while an expansion generates troughs of subatmospheric pressure....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8919
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8919
- Palabra clave:
- Filling
Piping systems
Systems engineering
Friction factors
Low pressures
Operational stages
Parametric sensitivity analysis
Pressure surges
Subatmospheric pressures
System failures
Thermodynamic parameter
Sensitivity analysis
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_696d5f45c6a307f0e84027f306d71bb7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8919 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
title |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
spellingShingle |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve Filling Piping systems Systems engineering Friction factors Low pressures Operational stages Parametric sensitivity analysis Pressure surges Subatmospheric pressures System failures Thermodynamic parameter Sensitivity analysis |
title_short |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
title_full |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
title_fullStr |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
title_full_unstemmed |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
title_sort |
A parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valve |
dc.subject.keywords.none.fl_str_mv |
Filling Piping systems Systems engineering Friction factors Low pressures Operational stages Parametric sensitivity analysis Pressure surges Subatmospheric pressures System failures Thermodynamic parameter Sensitivity analysis |
topic |
Filling Piping systems Systems engineering Friction factors Low pressures Operational stages Parametric sensitivity analysis Pressure surges Subatmospheric pressures System failures Thermodynamic parameter Sensitivity analysis |
description |
Filling and emptying operations should be planned by engineers in operational stages to prevent a system failure depending on reaching extreme low pressure values. In this sense, a compression of an air pocket produces pressure surges, while an expansion generates troughs of subatmospheric pressure. A sensitivity analysis of main hydraulic and thermodynamic parameters was conducted based on a mathematical model developed by the authors. A case study was selected to see the influence of different parameters. When the filling operation is performed, the more sensible parameters are pipe slope, air valve size, internal pipe diameter, and friction factor; while, the emptying operation shows that air valve size, air pocket size, pipe slope, and internal pipe diameter are the more sensible parameters. © 2018 BHR Group. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
13th International Conference on Pressure Surges; Vol. 2, pp. 949-960 |
dc.identifier.isbn.none.fl_str_mv |
9780000000002 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8919 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57193337460 56074282700 57205420202 35568240000 |
identifier_str_mv |
13th International Conference on Pressure Surges; Vol. 2, pp. 949-960 9780000000002 Universidad Tecnológica de Bolívar Repositorio UTB 57193337460 56074282700 57205420202 35568240000 |
url |
https://hdl.handle.net/20.500.12585/8919 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 November 2018 through 16 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BHR Group Limited |
publisher.none.fl_str_mv |
BHR Group Limited |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058991950&partnerID=40&md5=e2494530224f24d7435ff65757dcbbb0 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
13th International Conference on Pressure Surges |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8919/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021668321886208 |
spelling |
2020-03-26T16:32:36Z2020-03-26T16:32:36Z201813th International Conference on Pressure Surges; Vol. 2, pp. 949-9609780000000002https://hdl.handle.net/20.500.12585/8919Universidad Tecnológica de BolívarRepositorio UTB57193337460560742827005720542020235568240000Filling and emptying operations should be planned by engineers in operational stages to prevent a system failure depending on reaching extreme low pressure values. In this sense, a compression of an air pocket produces pressure surges, while an expansion generates troughs of subatmospheric pressure. A sensitivity analysis of main hydraulic and thermodynamic parameters was conducted based on a mathematical model developed by the authors. A case study was selected to see the influence of different parameters. When the filling operation is performed, the more sensible parameters are pipe slope, air valve size, internal pipe diameter, and friction factor; while, the emptying operation shows that air valve size, air pocket size, pipe slope, and internal pipe diameter are the more sensible parameters. © 2018 BHR Group.Recurso electrónicoapplication/pdfengBHR Group Limitedhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058991950&partnerID=40&md5=e2494530224f24d7435ff65757dcbbb013th International Conference on Pressure SurgesA parametric sensitivity analysis of numerically modelled piston-type filling and emptying of an inclined pipeline with an air valveinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fFillingPiping systemsSystems engineeringFriction factorsLow pressuresOperational stagesParametric sensitivity analysisPressure surgesSubatmospheric pressuresSystem failuresThermodynamic parameterSensitivity analysis14 November 2018 through 16 November 2018Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Besharat M.Ramos H.M.Fuertes, V., (2001) Hydraulic Transient with Entrapped Air, , Doctoral thesis. Polytechnic University of Valencia, SpainZhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) Journal of Hydraulic Engineering, 139, pp. 949-959Izquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P.L., García-Serra, J., Pipeline startup with entrapped air (1999) Journal of Hydraulic Research, 37, pp. 579-590Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical modelling of pipelines with air pockets and air valves (2016) Canadian Journal of Civil Engineering, 43, pp. 1052-1061. , 10.1139/cjce-2016-0209Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9 (2), p. 98. , 2017, pp 1-15Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2018) Journal of Hydraulic ResearchMartins, S.C., Ramos, H.M., Almeida, A.B., Conceptual analogy for modelling entrapped air action in hydraulic systems (2015) Journal of Hydraulic Research, pp. 678-686Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water JournalHou, Q., Tijsseling, A.S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, A.S., Van'T-Westende, J.M.C., Experimental investigation on filling of a large-scale pipeline (2014) Journal of Hydraulic Engineering, 140 (11), pp. 1-14. , 04014053Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., Tijsseling, A.S., Van'T Westende, J.M.C., Emptying of largescale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100Laanearu, J., Hou, Q., Annus, I., Tijsseling, I.A.S., Water-column mass losses during the emptying of a large-scale pipeline by pressurized air (2015) Proc. Est. Acad. Sci., 64 (1), pp. 8-16Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4)Hou, Q., Wang, S., Kruisbrink, A.C.H., Tijsseling, A.S., Lagrangian modeling of fluid transients in a pipe with entrapped air (2015) Proceedings of BHR 12th International Conference on Pressure Surges, 18-20, pp. 215-227. , (Editor, A. S. Tijsseling), Dublinhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8919/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8919oai:repositorio.utb.edu.co:20.500.12585/89192023-05-26 09:43:48.181Repositorio Institucional UTBrepositorioutb@utb.edu.co |