Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis

Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an adv...

Full description

Autores:
Barreto, D.
Fajardo, J
Campillo, J.
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12151
Acceso en línea:
https://hdl.handle.net/20.500.12585/12151
Palabra clave:
Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_676277332d5dfa18aca2d801b70525f9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12151
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
title Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
spellingShingle Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
title_short Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
title_full Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
title_fullStr Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
title_full_unstemmed Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
title_sort Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
dc.creator.fl_str_mv Barreto, D.
Fajardo, J
Campillo, J.
dc.contributor.author.none.fl_str_mv Barreto, D.
Fajardo, J
Campillo, J.
dc.subject.keywords.spa.fl_str_mv Costs And Cost Analysis;
Exergy;
Cogeneration Systems
topic Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:36:12Z
dc.date.available.none.fl_str_mv 2023-07-18T19:36:12Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12151
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE2019-10410
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers.
10.1115/IMECE2019-10410
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12151
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/1/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/4/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/5/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.jpg
bitstream.checksum.fl_str_mv 8c47d4c3de141528f1724e81a683400d
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a334d67528c40a22af6ae12487893699
089e40c0ef3b47b67205e611b48d2f41
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021688941084672
spelling Barreto, D.2857c702-720f-454a-8b6f-725302964923Fajardo, J89e39209-aa6c-4020-a507-9c56a27d4943Campillo, J.8c4725e9-5e97-40df-b9ae-f67c73617ff32023-07-18T19:36:12Z2023-07-18T19:36:12Z20192023Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers.https://hdl.handle.net/20.500.12585/1215110.1115/IMECE2019-10410Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarConventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Costs And Cost Analysis;Exergy;Cogeneration SystemsLEMBCartagena de IndiasFarouk, N., Sheng, L., Hayat, Q. Effeect of ambient temperature on the performance of gas turbines power plant (2013) IJCSI International Journal of Computer Science Issues, 10 (nº3), pp. 439-442. Cited 30 times.Barakat, S., Ramzy, A., Hamed, A.M., El Emam, S.H. Enhancement of gas turbine power output using earth to air heat exchanger (EAHE) cooling system (2016) Energy Conversion and Management, 111, pp. 137-146. Cited 69 times. doi: 10.1016/j.enconman.2015.12.060De Paepe, W., Montero Carrero, M., Bram, S., Contino, F., Parente, A. Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts (2017) Applied Energy, 207, pp. 218-229. Cited 56 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.06.001Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 52 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development, Segunda Ed.. Cited 942 times. Oxford: ELSEVIERChen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 164 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (2012) Energies, 5 (6), pp. 1850-1863. Cited 92 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850Tsatsaronis, G., Morosuk, T. Avanced thermodynamic (exergetic) analysis (2012) De 6th European Thermal Sciences Conference EindhovenTsatsaronis, G., Kelly, S.O., Morosuk, T.V. Endogenous and exogenous exergy destruction in thermal systems (2006) American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES. Cited 43 times. http://www.asmedl.org/journals/doc/ASMEDL-home/proc/ ISBN: 0791837904; 978-079183790-0 doi: 10.1115/IMECE2006-13675Kelly, S. (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction. Cited 95 times.Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (Open Access) (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270. Cited 391 times. doi: 10.1016/S0196-8904(02)00012-2Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 84 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038Şöhret, Y., Açikkalp, E., Hepbasli, A., Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts (2015) Energy, Part 2 90, pp. 1219-1228. Cited 83 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.06.071Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 63 times. doi: 10.1016/j.enconman.2014.03.006Kreuzer, H.J., Tamblyn, I. Thermodynamics (2010) Thermodynamics, pp. 1-225. Cited 19 times. http://www.worldscientific.com/worldscibooks/10.1142/7964#t=toc ISBN: 978-981432998-9; 978-981432752-7 doi: 10.1142/79642018) EES "Engineering Equation Solver. Cited 1522 times. F-Chart Software, WisconsinSzargut (2007) Egzergia. Poradnik Obliczania I Stosowania. Cited 52 times. Widawnictwo Politechniki Shlaskej,» GliwiceKelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 326 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007Anvavi, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a trigeneration system (2016) Applied Thermal Engineering. Cited 2 times.Fallah, M., Siyahi, H., Ghiasi, R.A., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective (2016) Energy, Part 1 116, pp. 701-715. Cited 57 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.10.009Marzouk, A., Hanafi, A. Thermo-economic analysis of inlet air cooling in gas turbine plants (2013) Power Technologies, pp. 90-99. Cited 20 times.http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdfScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdfapplication/pdf179627https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/1/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf8c47d4c3de141528f1724e81a683400dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.txtScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.txtExtracted texttext/plain2689https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/4/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.txta334d67528c40a22af6ae12487893699MD54THUMBNAILScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.jpgScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.jpgGenerated Thumbnailimage/jpeg6614https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/5/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.jpg089e40c0ef3b47b67205e611b48d2f41MD5520.500.12585/12151oai:repositorio.utb.edu.co:20.500.12585/121512023-07-19 00:19:17.038Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=