Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an adv...
- Autores:
-
Barreto, D.
Fajardo, J
Campillo, J.
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12151
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12151
- Palabra clave:
- Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_676277332d5dfa18aca2d801b70525f9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12151 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
title |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
spellingShingle |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis Costs And Cost Analysis; Exergy; Cogeneration Systems LEMB |
title_short |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
title_full |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
title_fullStr |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
title_full_unstemmed |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
title_sort |
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis |
dc.creator.fl_str_mv |
Barreto, D. Fajardo, J Campillo, J. |
dc.contributor.author.none.fl_str_mv |
Barreto, D. Fajardo, J Campillo, J. |
dc.subject.keywords.spa.fl_str_mv |
Costs And Cost Analysis; Exergy; Cogeneration Systems |
topic |
Costs And Cost Analysis; Exergy; Cogeneration Systems LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2023-07-18T19:36:12Z |
dc.date.available.none.fl_str_mv |
2023-07-18T19:36:12Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12151 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE2019-10410 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers. 10.1115/IMECE2019-10410 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12151 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/1/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/4/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/5/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.jpg |
bitstream.checksum.fl_str_mv |
8c47d4c3de141528f1724e81a683400d 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 a334d67528c40a22af6ae12487893699 089e40c0ef3b47b67205e611b48d2f41 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021688941084672 |
spelling |
Barreto, D.2857c702-720f-454a-8b6f-725302964923Fajardo, J89e39209-aa6c-4020-a507-9c56a27d4943Campillo, J.8c4725e9-5e97-40df-b9ae-f67c73617ff32023-07-18T19:36:12Z2023-07-18T19:36:12Z20192023Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers.https://hdl.handle.net/20.500.12585/1215110.1115/IMECE2019-10410Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarConventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Costs And Cost Analysis;Exergy;Cogeneration SystemsLEMBCartagena de IndiasFarouk, N., Sheng, L., Hayat, Q. Effeect of ambient temperature on the performance of gas turbines power plant (2013) IJCSI International Journal of Computer Science Issues, 10 (nº3), pp. 439-442. Cited 30 times.Barakat, S., Ramzy, A., Hamed, A.M., El Emam, S.H. Enhancement of gas turbine power output using earth to air heat exchanger (EAHE) cooling system (2016) Energy Conversion and Management, 111, pp. 137-146. Cited 69 times. doi: 10.1016/j.enconman.2015.12.060De Paepe, W., Montero Carrero, M., Bram, S., Contino, F., Parente, A. Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts (2017) Applied Energy, 207, pp. 218-229. Cited 56 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.06.001Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 52 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development, Segunda Ed.. Cited 942 times. Oxford: ELSEVIERChen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 164 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (2012) Energies, 5 (6), pp. 1850-1863. Cited 92 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850Tsatsaronis, G., Morosuk, T. Avanced thermodynamic (exergetic) analysis (2012) De 6th European Thermal Sciences Conference EindhovenTsatsaronis, G., Kelly, S.O., Morosuk, T.V. Endogenous and exogenous exergy destruction in thermal systems (2006) American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES. Cited 43 times. http://www.asmedl.org/journals/doc/ASMEDL-home/proc/ ISBN: 0791837904; 978-079183790-0 doi: 10.1115/IMECE2006-13675Kelly, S. (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction. Cited 95 times.Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (Open Access) (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270. Cited 391 times. doi: 10.1016/S0196-8904(02)00012-2Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 84 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038Şöhret, Y., Açikkalp, E., Hepbasli, A., Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts (2015) Energy, Part 2 90, pp. 1219-1228. Cited 83 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.06.071Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 63 times. doi: 10.1016/j.enconman.2014.03.006Kreuzer, H.J., Tamblyn, I. Thermodynamics (2010) Thermodynamics, pp. 1-225. Cited 19 times. http://www.worldscientific.com/worldscibooks/10.1142/7964#t=toc ISBN: 978-981432998-9; 978-981432752-7 doi: 10.1142/79642018) EES "Engineering Equation Solver. Cited 1522 times. F-Chart Software, WisconsinSzargut (2007) Egzergia. Poradnik Obliczania I Stosowania. Cited 52 times. Widawnictwo Politechniki Shlaskej,» GliwiceKelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 326 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007Anvavi, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a trigeneration system (2016) Applied Thermal Engineering. Cited 2 times.Fallah, M., Siyahi, H., Ghiasi, R.A., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective (2016) Energy, Part 1 116, pp. 701-715. Cited 57 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.10.009Marzouk, A., Hanafi, A. Thermo-economic analysis of inlet air cooling in gas turbine plants (2013) Power Technologies, pp. 90-99. Cited 20 times.http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdfScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdfapplication/pdf179627https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/1/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf8c47d4c3de141528f1724e81a683400dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.txtScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.txtExtracted texttext/plain2689https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/4/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.txta334d67528c40a22af6ae12487893699MD54THUMBNAILScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.jpgScopus - Document details - Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis.pdf.jpgGenerated Thumbnailimage/jpeg6614https://repositorio.utb.edu.co/bitstream/20.500.12585/12151/5/Scopus%20-%20Document%20details%20-%20Determination%20of%20the%20optimal%20range%20of%20the%20compressor%20inlet%20air%20temperature%20in%20a%20power%20plant%20with%20stig%20cycle%20through%20of%20advanced%20exergetic%20analysis.pdf.jpg089e40c0ef3b47b67205e611b48d2f41MD5520.500.12585/12151oai:repositorio.utb.edu.co:20.500.12585/121512023-07-19 00:19:17.038Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |