Virtual screening of new targets and inhibitors for Candida albicans infection control
Infection by Candida albicans fungus is considered of biomedical interest, producing significant mortality and comorbidity. The development of pathogen resistance during pharmacological treatments is increasing, thus, the pursuit for new inhibitors is necessary. Virtual screening is one of the bioin...
- Autores:
-
Torres-Osorio, Lenin
Munera-Gomez, Marlon
Fennix-Agudelo, Mary
Chavarro-Mesa, Edisson
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12126
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12126
- Palabra clave:
- Bioinformatics
Candidiasis
Drug treatment
Molecular docking
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_66b262c67f0feb9122bf82031fba0958 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12126 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
title |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
spellingShingle |
Virtual screening of new targets and inhibitors for Candida albicans infection control Bioinformatics Candidiasis Drug treatment Molecular docking |
title_short |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
title_full |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
title_fullStr |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
title_full_unstemmed |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
title_sort |
Virtual screening of new targets and inhibitors for Candida albicans infection control |
dc.creator.fl_str_mv |
Torres-Osorio, Lenin Munera-Gomez, Marlon Fennix-Agudelo, Mary Chavarro-Mesa, Edisson |
dc.contributor.author.none.fl_str_mv |
Torres-Osorio, Lenin Munera-Gomez, Marlon Fennix-Agudelo, Mary Chavarro-Mesa, Edisson |
dc.subject.keywords.spa.fl_str_mv |
Bioinformatics Candidiasis Drug treatment Molecular docking |
topic |
Bioinformatics Candidiasis Drug treatment Molecular docking |
description |
Infection by Candida albicans fungus is considered of biomedical interest, producing significant mortality and comorbidity. The development of pathogen resistance during pharmacological treatments is increasing, thus, the pursuit for new inhibitors is necessary. Virtual screening is one of the bioinformatics tools used for the search of new drugs, and potential targets for disease management. The aim of the present study was to analyze a library of potential targets, and to identify suppressors for C. albicans using virtual screening. 50 protein targets with restraining potential were examined, choosing GPI-Anchored hemophore PGA10 protein (RBT5) as the target, since it is involved in C. albicans survival and nutrients acquisition. Meanwhile, through the implementation of AutoDock Vina and PyRx software, the molecular affinity of 25 molecules available in ZINC15 database was analyzed, obtaining favorable results for the following compounds: ZINC000000065058, ZINC000000065374 and ZINC000000072389, displaying affinity with the same region of the target protein. These results provide a potential target for the development of novel suppressors, as well as guidelines for three new drugs that could aid in C. albicans suppression |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-13 |
dc.date.accessioned.none.fl_str_mv |
2023-07-18T19:24:44Z |
dc.date.available.none.fl_str_mv |
2023-07-18T19:24:44Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
L. Torres-Osorio, M. Múnera-Gómez, M. Fennix-Agudelo and E. Chavarro-Mesa, "Virtual screening of new targets and inhibitors for Candida albicans infection control," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá D.C., Colombia, 2021, pp. 1-5, doi: 10.1109/CI-IBBI54220.2021.9626093. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12126 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CI-IBBI54220.2021.9626093 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
L. Torres-Osorio, M. Múnera-Gómez, M. Fennix-Agudelo and E. Chavarro-Mesa, "Virtual screening of new targets and inhibitors for Candida albicans infection control," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá D.C., Colombia, 2021, pp. 1-5, doi: 10.1109/CI-IBBI54220.2021.9626093. 10.1109/CI-IBBI54220.2021.9626093 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12126 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Pdf |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.source.spa.fl_str_mv |
2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/1/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/4/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/5/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf.jpg |
bitstream.checksum.fl_str_mv |
921c14c9ff169a42ac1c582cb6fb9348 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 d784fa8b6d98d27699781bd9a7cf19f0 5f86f04cf883b0e68291755d84485554 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021699280044032 |
spelling |
Torres-Osorio, Lenin31308b93-0c97-4645-9315-dc236cdf5f2dMunera-Gomez, Marlon3f27a5c2-6e87-4055-9ed3-1313a62c1492Fennix-Agudelo, Maryb6da7c0e-a860-4d45-a87b-3d6871885959Chavarro-Mesa, Edisson800ba77d-129a-48f9-bc50-2a8c25be12082023-07-18T19:24:44Z2023-07-18T19:24:44Z2021-10-132023-07L. Torres-Osorio, M. Múnera-Gómez, M. Fennix-Agudelo and E. Chavarro-Mesa, "Virtual screening of new targets and inhibitors for Candida albicans infection control," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá D.C., Colombia, 2021, pp. 1-5, doi: 10.1109/CI-IBBI54220.2021.9626093.https://hdl.handle.net/20.500.12585/1212610.1109/CI-IBBI54220.2021.9626093Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarInfection by Candida albicans fungus is considered of biomedical interest, producing significant mortality and comorbidity. The development of pathogen resistance during pharmacological treatments is increasing, thus, the pursuit for new inhibitors is necessary. Virtual screening is one of the bioinformatics tools used for the search of new drugs, and potential targets for disease management. The aim of the present study was to analyze a library of potential targets, and to identify suppressors for C. albicans using virtual screening. 50 protein targets with restraining potential were examined, choosing GPI-Anchored hemophore PGA10 protein (RBT5) as the target, since it is involved in C. albicans survival and nutrients acquisition. Meanwhile, through the implementation of AutoDock Vina and PyRx software, the molecular affinity of 25 molecules available in ZINC15 database was analyzed, obtaining favorable results for the following compounds: ZINC000000065058, ZINC000000065374 and ZINC000000072389, displaying affinity with the same region of the target protein. These results provide a potential target for the development of novel suppressors, as well as guidelines for three new drugs that could aid in C. albicans suppressionPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI)Virtual screening of new targets and inhibitors for Candida albicans infection controlinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1BioinformaticsCandidiasisDrug treatmentMolecular dockingCartagena de IndiasCampus TecnológicoL. J. Douglas, "Candida biofilms and their role in infection", Trends Microbiol., vol. 11, no. 1, pp. 30-36, 2003.S. G. Whaley, E. L. Berkow, J. M. Rybak, A. T. Nishimoto, K. S. Barker and P. D. Rogers, "Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species", Frontiers in Microbiology, vol. 7, pp. 2173, 2017.Z. Farhadi, T. Farhadi and S. M. Hashemian, "Virtual screening for potential inhibitors of β(13)-D-glucan synthase as drug candidates against fungal cell wall", J. Drug Assess., vol. 9, no. 1, pp. 52-59, Jan. 2020.N. S. Pagadala, K. Syed and J. Tuszynski, "Software for molecular docking: a review", Biophys. Rev., vol. 9, no. 2, pp. 91-102, 2017.T. Sterling and J. J. Irwin, "ZINC 15 – Ligand Discovery for Everyone", J. Chem. Inf. Model., vol. 55, no. 11, pp. 2324-2337, Nov. 2015.D.-I. Liao, J. E. Thompson, S. Fahnestock, B. Valent and D. B. Jordan, "A Structural Account of Substrate and Inhibitor Specificity Differences between Two Naphthol Reductases", Biochemistry, vol. 40, no. 30, pp. 8696-8704, Jul. 2001.D.-I. Liao, J. E. Thompson, S. Fahnestock, B. Valent and D. B. Jordan, "Crystal structure of 1368-tetrahydroxynaphthalene reductase in complex with NADPH and pyroquilon", 2001.S. K. Burley et al., "RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology biomedicine biotechnology bioengineering and energy sciences", Nucleic Acids Res., vol. 49, no. D1, pp. D437-D451, Jan. 2021.M. S. Skrzypek, J. Binkley, G. Binkley, S. R. Miyasato, M. Simison and G. Sherlock, "The Candida Genome Database (CGD): incorporation of Assembly 22 systematic identifiers and visualization of high throughput sequencing data", Nucleic Acids Res., vol. 45, no. D1, pp. D592-D596, Jan. 2017.R. Apweiler et al., "UniProt: the Universal Protein knowledgebase", Nucleic Acids Res., vol. 32, no. suppl_1, pp. D115-D119, Jan. 2004.V. A. Simossis and J. Heringa, "PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information", Nucleic Acids Res., vol. 33, no. suppl_2, pp. W289-W294, Jul. 2005.A. Waterhouse et al., "SWISS-MODEL: homology modelling of protein structures and complexes", Nucleic Acids Res., vol. 46, no. W1, pp. W296-W303, Jul. 2018.R. A. Laskowski, M. W. MacArthur and J. M. Thornton, "PROCHECK : validation of protein-structure coordinates", pp. 684-687, 2012D. Seeliger and B. L. de Groot, "Ligand docking and binding site analysis with PyMOL and Autodock/Vina", J. Comput. Aided. Mol. Des., vol. 24, no. 5, pp. 417-422, 2010.S. Kim et al., "PubChem in 2021: new data content and improved web interfaces", Nucleic Acids Res., vol. 49, no. D1, pp. D1388-D1395, Jan. 2021.M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, "Avogadro: an advanced semantic chemical editor visualization and analysis platform", J. Cheminform., vol. 4, no. 1, pp. 17, 2012.E. F. Pettersen et al., "UCSF Chimera—A visualization system for exploratory research and analysis", J. Comput. Chem., vol. 25, no. 13, pp. 1605-1612, Oct. 2004.N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, "Open Babel: An open chemical toolbox", J. Cheminform., vol. 3, no. 1, pp. 33, 2011.E. Krieger et al., "Improving physical realism stereochemistry and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8", Proteins Struct. Funct. Bioinforma., vol. 77, no. S9, pp. 114-122, Jan. 2009.O. Trott and A. J. Olson, "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading", J. Comput. Chem., vol. 31, no. 2, pp. 455-61, Jan. 2010.S. Dallakyan and A. J. Olson, "Small-Molecule Library Screening by Docking with PyRx BT - Chemical Biology: Methods and Protocols" in , New York, NY:Springer New York, pp. 243-250, 2015.L. Design, "Pharmacophore and ligand-based design with Biovia Discovery Studio®", 2014.D. Kornitzer and U. Roy, "Pathways of heme utilization in fungi", Biochim. Biophys. Acta - Mol. Cell Res., vol. 1867, no. 11, pp. 118817, 2020A. Pérez, G. Ramage, R. Blanes, A. Murgui, M. Casanova and J. P. Martínez, "Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain", FEMS Yeast Res., vol. 11, no. 3, pp. 273-284, May 2011.A. Pérez, B. Pedrós, A. Murgui, M. Casanova, J. L. López-Ribot and J. P. Martínez, "Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain", FEMS Yeast Res., vol. 6, no. 7, pp. 1074-1084, Nov. 2006.A. Pérez, B. Pedrós, A. Murgui, M. Casanova, J. L. López-Ribot and J. P. Martínez, "Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain", FEMS Yeast Res., vol. 6, no. 7, pp. 1074-1084, Nov. 2006.W. Zhu et al., "BcCFEM1 a CFEM Domain-Containing Protein with Putative GPI-Anchored Site Is Involved in Pathogenicity Conidial Production and Stress Tolerance in Botrytis cinerea", Frontiers in Microbiology, vol. 8, pp. 1807, 2017.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALVirtual screening of new targets and inhibitors for Candida albicans infection control.pdfVirtual screening of new targets and inhibitors for Candida albicans infection control.pdfapplication/pdf156392https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/1/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf921c14c9ff169a42ac1c582cb6fb9348MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTVirtual screening of new targets and inhibitors for Candida albicans infection control.pdf.txtVirtual screening of new targets and inhibitors for Candida albicans infection control.pdf.txtExtracted texttext/plain2https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/4/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD54THUMBNAILVirtual screening of new targets and inhibitors for Candida albicans infection control.pdf.jpgVirtual screening of new targets and inhibitors for Candida albicans infection control.pdf.jpgGenerated Thumbnailimage/jpeg7079https://repositorio.utb.edu.co/bitstream/20.500.12585/12126/5/Virtual%20screening%20of%20new%20targets%20and%20inhibitors%20for%20Candida%20albicans%20infection%20control.pdf.jpg5f86f04cf883b0e68291755d84485554MD5520.500.12585/12126oai:repositorio.utb.edu.co:20.500.12585/121262023-07-19 00:19:06.701Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |