QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand

The development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetamino...

Full description

Autores:
Martínez-Trespalacios, José A.
Polo-Herrera, Daniel E.
Félix-Massa 3, Tamara Y.
Hernandez-Rivera, Samuel P.
Hernandez-Fernandez, Joaquín
Colpas-Castillo, Fredy
Castro-Suarez, John R.
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12759
Acceso en línea:
https://hdl.handle.net/20.500.12585/12759
Palabra clave:
Vibrational spectroscopy
Machine learning
Counterfeit drugs
Chemometrics
Mid-infrared
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_663fbbaae349d1938c7116b133407ce9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12759
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
title QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
spellingShingle QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
Vibrational spectroscopy
Machine learning
Counterfeit drugs
Chemometrics
Mid-infrared
LEMB
title_short QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
title_full QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
title_fullStr QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
title_full_unstemmed QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
title_sort QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
dc.creator.fl_str_mv Martínez-Trespalacios, José A.
Polo-Herrera, Daniel E.
Félix-Massa 3, Tamara Y.
Hernandez-Rivera, Samuel P.
Hernandez-Fernandez, Joaquín
Colpas-Castillo, Fredy
Castro-Suarez, John R.
dc.contributor.author.none.fl_str_mv Martínez-Trespalacios, José A.
Polo-Herrera, Daniel E.
Félix-Massa 3, Tamara Y.
Hernandez-Rivera, Samuel P.
Hernandez-Fernandez, Joaquín
Colpas-Castillo, Fredy
Castro-Suarez, John R.
dc.subject.keywords.spa.fl_str_mv Vibrational spectroscopy
Machine learning
Counterfeit drugs
Chemometrics
Mid-infrared
topic Vibrational spectroscopy
Machine learning
Counterfeit drugs
Chemometrics
Mid-infrared
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods were used. First, a spectral search through correlation indices. Second, machine learning algorithms such as principal component analysis (PCA), support vector classification (SVC), decision tree classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. SNV and first derivative were used as preprocessing to improve the spectral information. Precision, recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed limitations in differentiating between brands, particularly for tablets containing AAP as the only API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets according to their brand, even for brands containing only AAP.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-12T13:07:23Z
dc.date.available.none.fl_str_mv 2024-11-12T13:07:23Z
dc.date.issued.none.fl_str_mv 2024-07-28
dc.date.submitted.none.fl_str_mv 2024-11-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Martínez-Trespalacios, J.A.; Polo-Herrera, D.E.; Félix-Massa, T.Y.; Hernández-Rivera, S.P.; Hernández- Fernández, J.; ColpasCastillo, F.; Castro-Suarez, J.R. QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand. Molecules 2024, 29, 3562. https://doi.org/10.3390/molecules29153562
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12759
dc.identifier.doi.none.fl_str_mv 10.3390/molecules291 53562
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Martínez-Trespalacios, J.A.; Polo-Herrera, D.E.; Félix-Massa, T.Y.; Hernández-Rivera, S.P.; Hernández- Fernández, J.; ColpasCastillo, F.; Castro-Suarez, J.R. QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand. Molecules 2024, 29, 3562. https://doi.org/10.3390/molecules29153562
10.3390/molecules291 53562
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12759
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ingeniería
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Molecules
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/1/molecules-29-03562.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/4/molecules-29-03562.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/5/molecules-29-03562.pdf.jpg
bitstream.checksum.fl_str_mv c4f8d0ce1c96d5bd242ee46ab9815b59
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
7d579f07b9062dda974524a7d950a44d
abfbd97cded4a61538bc3f8980b4bfe1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1834107672661590016
spelling Martínez-Trespalacios, José A.fac1dfe4-82d1-4dea-912c-7e6ec6557e10Polo-Herrera, Daniel E.283fd17f-8c28-4e23-a5a9-a7daa687059fFélix-Massa 3, Tamara Y.132679e0-f057-4d21-b0eb-01e794d4cbdbHernandez-Rivera, Samuel P.bbfd6e7d-6d9c-400e-8490-ee7c925cde4fHernandez-Fernandez, Joaquín3d23cc40-8b37-40e5-b3e2-314ba827d68dColpas-Castillo, Fredy3fe3ca5d-b931-4e89-8378-52cac5122168Castro-Suarez, John R.e2326948-21b0-4572-aa06-ed6fc206a6e92024-11-12T13:07:23Z2024-11-12T13:07:23Z2024-07-282024-11-11Martínez-Trespalacios, J.A.; Polo-Herrera, D.E.; Félix-Massa, T.Y.; Hernández-Rivera, S.P.; Hernández- Fernández, J.; ColpasCastillo, F.; Castro-Suarez, J.R. QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand. Molecules 2024, 29, 3562. https://doi.org/10.3390/molecules29153562https://hdl.handle.net/20.500.12585/1275910.3390/molecules291 53562Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods were used. First, a spectral search through correlation indices. Second, machine learning algorithms such as principal component analysis (PCA), support vector classification (SVC), decision tree classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. SNV and first derivative were used as preprocessing to improve the spectral information. Precision, recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed limitations in differentiating between brands, particularly for tablets containing AAP as the only API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets according to their brand, even for brands containing only AAP.17 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2MoleculesQCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brandinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Vibrational spectroscopyMachine learningCounterfeit drugsChemometricsMid-infraredLEMBCartagena de IndiasIngenieríaCampus TecnológicoInvestigadoresFDA. Counterfeit Medicine. Available online: http://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/CounterfeitMedicine/Pathak, R.; Gaur, V.; Sankrityayan, H.; Gogtay, J. Tackling Counterfeit Drugs: The Challenges and Possibilities. Pharm. Med. 2023, 37, 281–290. [Google Scholar] [CrossRef]World Health Organization. Health and Well-Being. Available online: https://www.who.int/data/gho/data/major-themes/health-and-well-being (accessed on 1 March 2023).El-Dahiyat, F.; Fahelelbom, K.M.S.; Jairoun, A.A.; Al-Hemyari, S.S. Combatting Substandard and Falsified Medicines: Public Awareness and Identification of Counterfeit Medications. Front. Public Health 2021, 9, 754279. [Google Scholar] [CrossRef] [PubMed]World Health Organization. 1 in 10 Medical Products in Developing Countries is Substandard or Falsified. Available online: https://www.who.int/news/item/28-11-2017-1-in-10-medical-products-in-developing-countries-is-substandard-or-falsified (accessed on 28 November 2017).Ziavrou, K.S.; Noguera, S.; Boumba, V.A. Trends in counterfeit drugs and pharmaceuticals before and during COVID-19 pandemic. Forensic Sci. Int. 2022, 338, 111382. [Google Scholar] [CrossRef] [PubMed]Srivastava, K. Fake covid vaccines boost the black market for counterfeit medicines. BMJ 2021, 375, 2754. [Google Scholar] [CrossRef]Caragea, G.; Avram, O.; Pauna, A.; Costea, A.; Tudosie, M. Acetaminophen, a therapeutic or an extremely toxic remedy—A review. J. Mind Med. Sci. 2022, 9, 102–110. [Google Scholar] [CrossRef]Vaughan, J.B. Colorimetric Determination of Acetaminophen. J. Pharm. Sci. 1969, 58, 469–470. [Google Scholar] [CrossRef]Arıkan, C.C.; Kulabaş, N.; Küçükgüzel, İ. Synthesis and standardization of an impurity of acetaminophen, development and validation of liquid chromatographic method. J. Pharm. Biomed. Anal. 2023, 223, 115123. [Google Scholar] [CrossRef]Ismail, A.; Gamal, M.; Nasr, M. Optimization of Analytical Method for Simultaneous Determination of Acetaminophen, Caffeine, and Aspirin in Tablet Dosage Form. Pharm. Chem. J. 2023, 56, 12. [Google Scholar] [CrossRef]Gupta, R.N.; Pickersgill, R.; Stefanec, M. Colorimetric determination of acetaminophen. Clin. Biochem. 1983, 16, 220–221. [Google Scholar] [CrossRef]Saeed, A.M. Spectrophotometric Determination of Paracetamol in Some Manufactured Tablets in Iraqi markets. Int. J. Pharm. Sci. Rev. Res. 2017, 42, 53–57. [Google Scholar]Magerusan, L.; Pogacean, F.; Pruneanu, S. Enhanced Acetaminophen Electrochemical Sensing Based on Nitrogen-Doped Graphene. Int. J. Mol. Sci. 2022, 23, 14866. [Google Scholar] [CrossRef] [PubMed]Vazan, M.; Tashkhourian, J.; Haghighi, B. A novel electrochemical sensor based on MoO3 nanobelt-graphene oxide composite for the simultaneous determination of paracetamol and 4-aminophenol. Diam. Relat. Mater. 2023, 140, 110549. [Google Scholar] [CrossRef]Wartewig, S.; Neubert, R.H.H. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar] [CrossRef] [PubMed]Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed]Scappaticci, C.; Spera, S.; Biancolillo, A.; Marini, F. Detection and Quantification of Alprazolam Added to Long Drinks by Near Infrared Spectroscopy and Chemometrics. Molecules 2022, 27, 6420. [Google Scholar] [CrossRef]Shi, G.; Lin, L.; Liu, Y.; Chen, G.; Luo, Y.; Wu, Y.; Li, H. Pharmaceutical application of multivariate modelling techniques: A review on the manufacturing of tablets. RSC Advances 2021, 11, 8323–8345. [Google Scholar] [CrossRef] [PubMed]Ziémons, E.; Mantanus, J.; Lebrun, P.; Rozet, E.; Evrard, B.; Hubert, P. Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy. J. Pharm. Biomed. Anal. 2010, 53, 510–516. [Google Scholar] [CrossRef]Szostak, R.; Mazurek, S. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 2001, 127, 144–148. [Google Scholar] [CrossRef] [PubMed]Khanmohammadi, M.; Garmarudi, A.B.; Moazzen, N.; Ghasemi, K. Qualitative Discrimination Between Paracetamol Tablets Made by Near Infrared Spectroscopy and Chemometrics With Regard to Polymorphism. J. Struct. Chem. 2010, 51, 663–669. [Google Scholar] [CrossRef]Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef]Oloyede, O.O.; Alabi, Z.O.; Akinyemi, A.O.; Oyelere, S.F.; Oluseye, A.B.; Owoyemi, B.C.D. Comparative evaluation of acetaminophen form (I) in commercialized paracetamol brands. Sci. Afr. 2023, 19, e01537. [Google Scholar] [CrossRef]Mokari, A.; Guo, S.; Bocklitz, T. Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning. Molecules 2023, 28, 6886. [Google Scholar] [CrossRef] [PubMed]Ramirez, C.A.M.; Greenop, M.; Ashton, L.; Rehman, I.U. Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev. 2020, 56, 733–763. [Google Scholar] [CrossRef]Tan, C.; Chen, H.; Lin, Z. Brand classification of detergent powder using near-infrared spectroscopy and extreme learning machines. Microchem. J. 2021, 160, 105691. [Google Scholar] [CrossRef]Zhang, H.; Yang, Q.; Lu, J. Classification of washing powder brands using near-infrared spectroscopy combined with chemometric calibrations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 625–629. [Google Scholar] [CrossRef] [PubMed]Carrión-Roca, W.; Colón-Mercado, A.M.; Castro-Suarez, J.R.; Caballero-Agosto, E.R.; Colón-González, F.M.; Centeno-Ortiz, J.A.; Ríos-Velázquez, C.; Hernández-Rivera, S.P. Chemical sensing of common microorganisms found in biopharmaceutical industries using MIR laser spectroscopy and multivariate analysis. J. Biophotonics 2024, 17, e202300391. [Google Scholar] [CrossRef] [PubMed]Zorin, I.; Gattinger, P.; Ebner, A.; Brandstetter, M. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. Opt. Express 2022, 30, 5222. [Google Scholar] [CrossRef]Mayerhöfer, T.G.; Popp, J. Beer’s Law—Why Absorbance Depends (Almost) Linearly on Concentration. ChemPhysChem 2019, 20, 511–515. [Google Scholar] [CrossRef]Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]Plata-Enríquez, J.L.; Puche-Mercado, J.F.; Palmer-Velázquez, S.; Carrión-Roca, W.; Colón-González, F.M.; Hernández-Rivera, S.P. Analytical Method Development Using Quantum Laser Cascade Spectroscopy with Diffuse and Attenuated Total Reflectance for Determining Low Concentrations of Active Pharmaceutical Ingredients. Austin J. Anal. Pharm. Chem. 2023, 10, 1157. [Google Scholar] [CrossRef]Childs, D.T.D.; Hogg, R.A.; Revin, D.G.; Rehman, I.U.; Cockburn, J.W.; Matcher, S.J. Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 822–839. [Google Scholar] [CrossRef]Moynihan, H.A.; O’Hare, I.P. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int. J. Pharm. 2002, 247, 179–185. [Google Scholar] [CrossRef]Amado, A.M.; Azevedo, C.; Ribeiro-Claro, P.J.A. Conformational and vibrational reassessment of solid paracetamol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 183, 431–438. [Google Scholar] [CrossRef] [PubMed]Zapata, F.; López-Fernández, A.; Ortega-Ojeda, F.; Quintanilla, G.; García-Ruiz, C.; Montalvo, G. Introducing ATR-FTIR Spectroscopy through Analysis of Acetaminophen Drugs: Practical Lessons for Interdisciplinary and Progressive Learning for Undergraduate Students. J. Chem. Educ. 2021, 98, 2675–2686. [Google Scholar] [CrossRef]Matkovic, S.R.; Valle, G.M.; Galle, M.; Briand, L.E. Desarrollo y validación del análisis cuantitativo de Ibuprofeno en comprimidos por espectroscopía infrarroja. Acta Farm. Bonaer. 2004, 23, 527–532. [Google Scholar]Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernández-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519. [Google Scholar] [CrossRef] [PubMed]Abdalla, M.A. Determination of Caffeine, the Active Ingredient in Different Coffee Drinks and its Characterization by FTIR/ATR and TGA/DTA. Int. J. Eng. Appl. Sci. 2015, 2, 257765. [Google Scholar]Bakalska, R.; Ivanova, B.; Kolev, T. Solid-state IR-LD spectroscopy of codeine and N-norcodeine derivatives. Open Chem. 2006, 4, 533–542. [Google Scholar] [CrossRef]Arjunan, V.; Santhanam, R.; Marchewka, M.K.; Mohan, S. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol—An analgesic drug. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 315–330. [Google Scholar] [CrossRef]Deepak, S.N.; Hari, B.N.V. Optimization, Development and evaluation of Microemulsion for the release of combination of Guaifenesin and Phenylephrine. J. Appl. Pharm. Sci. 2013, 3, 48–56. [Google Scholar] [CrossRef]Lee, S.; Lee, H.; Chung, H. New discrimination method combining hit quality index based spectral matching and voting. Anal. Chim. Acta 2013, 758, 58–65. [Google Scholar] [CrossRef]ASTM E2310-04; Standard Guide for Use of Spectral Searching by Curve Matching Algorithms with Data Recorded Using Mid-Infrared Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 000370282098784. [Google Scholar] [CrossRef] [PubMed]Mijwil, M.M.; Aljanabi, M. A Comparative Analysis of Machine Learning Algorithms for Classification of Diabetes Utilizing Confusion Matrix Analysis. Baghdad Sci. J. 2023, 21, 1712–1728. [Google Scholar] [CrossRef]Ananey-Obiri, D.; Sarku, E. Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning Algorithms. Int. J. Comput. Appl. 2020, 176, 17–21. [Google Scholar] [CrossRef]Sitorus, A.; Lapcharoensuk, R. A rapid method to predict type and adulteration of coconut milk by near-infrared spectroscopy combined with machine learning and chemometric tools. Microchem. J. 2023, 195, 109461. [Google Scholar] [CrossRef]Tachie, C.Y.E.; Obiri-Ananey, D.; Alfaro-Cordoba, M.; Tawiah, N.A.; Aryee, A.N.A. Classification of oils and margarines by FTIR spectroscopy in tandem with machine learning. Food Chem. 2024, 431, 137077. [Google Scholar] [CrossRef] [PubMed]Pedregosa, F.; Buitinck, L.; Louppe, G.; Grisel, O.; Varoquaux, G.; Mueller, A. Scikit-learn. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]Trespalacios, J.A.M.; Suarez, J.R.C.; Fernández, J.H. Application of Fourier Transform Spectroscopy and Machine Learning to Determine Green Ethylene Content in Samples of Ethylene-Propylene Impact Copolymers. J. Southwest Jiaotong Univ. 2023, 58. [Google Scholar] [CrossRef]Carrera, B.; Piñol, V.L.; Mata, J.B.; Kim, K. A machine learning based classification models for plastic recycling using different wavelength range spectrums. J. Clean. Prod. 2022, 374, 133883. [Google Scholar] [CrossRef]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALmolecules-29-03562.pdfmolecules-29-03562.pdfapplication/pdf2286544https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/1/molecules-29-03562.pdfc4f8d0ce1c96d5bd242ee46ab9815b59MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmolecules-29-03562.pdf.txtmolecules-29-03562.pdf.txtExtracted texttext/plain58656https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/4/molecules-29-03562.pdf.txt7d579f07b9062dda974524a7d950a44dMD54THUMBNAILmolecules-29-03562.pdf.jpgmolecules-29-03562.pdf.jpgGenerated Thumbnailimage/jpeg7832https://repositorio.utb.edu.co/bitstream/20.500.12585/12759/5/molecules-29-03562.pdf.jpgabfbd97cded4a61538bc3f8980b4bfe1MD5520.500.12585/12759oai:repositorio.utb.edu.co:20.500.12585/127592024-11-13 00:15:34.08Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=