C 3 matching for asymptotically flat spacetimes
We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Rie...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9128
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9128
- Palabra clave:
- Asymptotically flat spacetimes
Curvature eigenvalues
Matching conditions
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6613bb0bc016537f616bfd9558efab7b |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9128 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
C 3 matching for asymptotically flat spacetimes |
title |
C 3 matching for asymptotically flat spacetimes |
spellingShingle |
C 3 matching for asymptotically flat spacetimes Asymptotically flat spacetimes Curvature eigenvalues Matching conditions |
title_short |
C 3 matching for asymptotically flat spacetimes |
title_full |
C 3 matching for asymptotically flat spacetimes |
title_fullStr |
C 3 matching for asymptotically flat spacetimes |
title_full_unstemmed |
C 3 matching for asymptotically flat spacetimes |
title_sort |
C 3 matching for asymptotically flat spacetimes |
dc.subject.keywords.none.fl_str_mv |
Asymptotically flat spacetimes Curvature eigenvalues Matching conditions |
topic |
Asymptotically flat spacetimes Curvature eigenvalues Matching conditions |
description |
We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Riemann curvature tensor by using repulsive gravity effects. To determine the location of the matching hypersurface, we use the first derivatives of the curvature eigenvalues, implying C 3 differentiability conditions. The matching itself is performed by demanding continuity of the curvature eigenvalues across the matching surface. We apply the C 3 matching approach to spherically symmetric perfect fluid spacetimes and obtain the physically meaningful condition that density and pressure should vanish on the matching surface. Several perfect fluid solutions in Newton and Einstein gravity are tested. © 2019 IOP Publishing Ltd. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:00Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:00Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Classical and Quantum Gravity; Vol. 36, Núm. 13 |
dc.identifier.issn.none.fl_str_mv |
02649381 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9128 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1361-6382/ab2422 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
25225467000 55989741100 |
identifier_str_mv |
Classical and Quantum Gravity; Vol. 36, Núm. 13 02649381 10.1088/1361-6382/ab2422 Universidad Tecnológica de Bolívar Repositorio UTB 25225467000 55989741100 |
url |
https://hdl.handle.net/20.500.12585/9128 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068694579&doi=10.1088%2f1361-6382%2fab2422&partnerID=40&md5=e7fc1fc70ffe6deedc839882796256e7 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9128/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021707484102656 |
spelling |
2020-03-26T16:33:00Z2020-03-26T16:33:00Z2019Classical and Quantum Gravity; Vol. 36, Núm. 1302649381https://hdl.handle.net/20.500.12585/912810.1088/1361-6382/ab2422Universidad Tecnológica de BolívarRepositorio UTB2522546700055989741100We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Riemann curvature tensor by using repulsive gravity effects. To determine the location of the matching hypersurface, we use the first derivatives of the curvature eigenvalues, implying C 3 differentiability conditions. The matching itself is performed by demanding continuity of the curvature eigenvalues across the matching surface. We apply the C 3 matching approach to spherically symmetric perfect fluid spacetimes and obtain the physically meaningful condition that density and pressure should vanish on the matching surface. Several perfect fluid solutions in Newton and Einstein gravity are tested. © 2019 IOP Publishing Ltd.Recurso electrónicoapplication/pdfengInstitute of Physics Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068694579&doi=10.1088%2f1361-6382%2fab2422&partnerID=40&md5=e7fc1fc70ffe6deedc839882796256e7C 3 matching for asymptotically flat spacetimesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Asymptotically flat spacetimesCurvature eigenvaluesMatching conditionsGutiérrez-Piñeres A.C.Quevedo H.Darmois, G., (1927) Les Équations de la Gravitation Einsteinienne, , (Paris: Gauthier-Villars)Lake, K., (2017) Gen. Relativ. Gravit., 49, p. 134Israel, W., (1966) Il Nuovo Cimento B (1965-1970), 44, pp. 1-14Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E., (2009) Exact Solutions of Einstein's Field Equations, , (Cambridge: Cambridge University Press)Quevedo, H., Matching conditions in relativistic astrophysics (2012) On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proc., 12th Marcel Grossmann Meeting on General Relativity, p. 35. , (Paris, France, 12-8 July 2009) ed T Damour et alLuongo, O., Quevedo, H., Toward an invariant definition of repulsive gravity (2012) On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proc., 12th Marcel Grossmann Meeting on General Relativity, p. 1029. , (Paris, France, 12-8 July 2009) ed T Damour et alLuongo, O., Quevedo, H., (2014) Phys. Rev., 90Luongo, O., Quevedo, H., (2018) Found. Phys., 48, pp. 17-26Misner, C.W., Thorne, K.S., Wheeler, J.A., (2017) Gravitation, , (Princeton, NJ: Princeton University Press)Savvidou, N., Anastopoulos, C., (2017) Singularity Stars, , ( [gr-qc])Mannheim, P.D., (1999) ASP Conf. Ser., 182, p. 413Mannheim, P.D., (1998) Curvature and Cosmic Repulsion, , (arXiv:9803135)Hayasaka, H., Minami, Y., (1999) AIP Conf. Proc., 458, p. 1040Deser, S., Ryzhov, A.V., (2005) Class. Quantum Grav., 22 (16), p. 3315Gasperini, M., (1998) Gen. Relativ. Gravit., 30, p. 1703Liu, C.-Y., Lee, D.S., Lin, C.Y., (2017) Class. Quantum Grav., 34 (23)Novikov, I.D., Bisnovatyi-Kogan, G.S., Novikov, D.I., (2018) Phys. Rev., 98Phillips, P.R., (2015) Mon. Not. R. Astron. Soc., 448, p. 681Resca, L., (2018) Eur. J. Phys., 39 (3)Woszczyna, A., Kutschera, M., Kubis, S., Czaja, W., Plaszczyk, P., Golda, Z.A., (2016) Gen. Relativ. Gravit., 48, p. 5Pugliese, D., Quevedo, H., Ruffini, R., (2013) Phys. Rev., 88Burinskii, A., (2008) Grav. Cosm., 14, pp. 109-122Pugliese, D., Quevedo, H., Ruffini, R., (2011) Phys. Rev., 84Pugliese, D., Quevedo, H., Ruffini, R., (2011) Phys. Rev., 84Binney, J., Tremaine, S., (2011) Galactic Dynamics, p. 36. , (Princeton, NJ: Princeton University Press)Tolman, R.C., (1939) Phys. Rev., 55, p. 364Raghoonundun, A.M., Hobill, D.W., (2016) The Geometrical Structure of the Tolman VII Solution, , ( [gr-qc])Ovalle, J., Linares, F., (2013) Phys. Rev., 88Macfadden, P., (2006) PhD Thesis, , A signature of higher dimensions at the cosmic singularityhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9128/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9128oai:repositorio.utb.edu.co:20.500.12585/91282021-02-02 15:20:06.475Repositorio Institucional UTBrepositorioutb@utb.edu.co |