C 3 matching for asymptotically flat spacetimes

We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Rie...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9128
Acceso en línea:
https://hdl.handle.net/20.500.12585/9128
Palabra clave:
Asymptotically flat spacetimes
Curvature eigenvalues
Matching conditions
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6613bb0bc016537f616bfd9558efab7b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9128
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv C 3 matching for asymptotically flat spacetimes
title C 3 matching for asymptotically flat spacetimes
spellingShingle C 3 matching for asymptotically flat spacetimes
Asymptotically flat spacetimes
Curvature eigenvalues
Matching conditions
title_short C 3 matching for asymptotically flat spacetimes
title_full C 3 matching for asymptotically flat spacetimes
title_fullStr C 3 matching for asymptotically flat spacetimes
title_full_unstemmed C 3 matching for asymptotically flat spacetimes
title_sort C 3 matching for asymptotically flat spacetimes
dc.subject.keywords.none.fl_str_mv Asymptotically flat spacetimes
Curvature eigenvalues
Matching conditions
topic Asymptotically flat spacetimes
Curvature eigenvalues
Matching conditions
description We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Riemann curvature tensor by using repulsive gravity effects. To determine the location of the matching hypersurface, we use the first derivatives of the curvature eigenvalues, implying C 3 differentiability conditions. The matching itself is performed by demanding continuity of the curvature eigenvalues across the matching surface. We apply the C 3 matching approach to spherically symmetric perfect fluid spacetimes and obtain the physically meaningful condition that density and pressure should vanish on the matching surface. Several perfect fluid solutions in Newton and Einstein gravity are tested. © 2019 IOP Publishing Ltd.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:00Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:00Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Classical and Quantum Gravity; Vol. 36, Núm. 13
dc.identifier.issn.none.fl_str_mv 02649381
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9128
dc.identifier.doi.none.fl_str_mv 10.1088/1361-6382/ab2422
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 25225467000
55989741100
identifier_str_mv Classical and Quantum Gravity; Vol. 36, Núm. 13
02649381
10.1088/1361-6382/ab2422
Universidad Tecnológica de Bolívar
Repositorio UTB
25225467000
55989741100
url https://hdl.handle.net/20.500.12585/9128
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068694579&doi=10.1088%2f1361-6382%2fab2422&partnerID=40&md5=e7fc1fc70ffe6deedc839882796256e7
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9128/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707484102656
spelling 2020-03-26T16:33:00Z2020-03-26T16:33:00Z2019Classical and Quantum Gravity; Vol. 36, Núm. 1302649381https://hdl.handle.net/20.500.12585/912810.1088/1361-6382/ab2422Universidad Tecnológica de BolívarRepositorio UTB2522546700055989741100We propose a criterion for finding the minimum distance at which an interior solution of Einstein's equations can be matched with an exterior asymptotically flat solution. The location of the matching hypersurface is thus constrained by a criterion defined in terms of the eigenvalues of the Riemann curvature tensor by using repulsive gravity effects. To determine the location of the matching hypersurface, we use the first derivatives of the curvature eigenvalues, implying C 3 differentiability conditions. The matching itself is performed by demanding continuity of the curvature eigenvalues across the matching surface. We apply the C 3 matching approach to spherically symmetric perfect fluid spacetimes and obtain the physically meaningful condition that density and pressure should vanish on the matching surface. Several perfect fluid solutions in Newton and Einstein gravity are tested. © 2019 IOP Publishing Ltd.Recurso electrónicoapplication/pdfengInstitute of Physics Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068694579&doi=10.1088%2f1361-6382%2fab2422&partnerID=40&md5=e7fc1fc70ffe6deedc839882796256e7C 3 matching for asymptotically flat spacetimesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Asymptotically flat spacetimesCurvature eigenvaluesMatching conditionsGutiérrez-Piñeres A.C.Quevedo H.Darmois, G., (1927) Les Équations de la Gravitation Einsteinienne, , (Paris: Gauthier-Villars)Lake, K., (2017) Gen. Relativ. Gravit., 49, p. 134Israel, W., (1966) Il Nuovo Cimento B (1965-1970), 44, pp. 1-14Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E., (2009) Exact Solutions of Einstein's Field Equations, , (Cambridge: Cambridge University Press)Quevedo, H., Matching conditions in relativistic astrophysics (2012) On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proc., 12th Marcel Grossmann Meeting on General Relativity, p. 35. , (Paris, France, 12-8 July 2009) ed T Damour et alLuongo, O., Quevedo, H., Toward an invariant definition of repulsive gravity (2012) On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proc., 12th Marcel Grossmann Meeting on General Relativity, p. 1029. , (Paris, France, 12-8 July 2009) ed T Damour et alLuongo, O., Quevedo, H., (2014) Phys. Rev., 90Luongo, O., Quevedo, H., (2018) Found. Phys., 48, pp. 17-26Misner, C.W., Thorne, K.S., Wheeler, J.A., (2017) Gravitation, , (Princeton, NJ: Princeton University Press)Savvidou, N., Anastopoulos, C., (2017) Singularity Stars, , ( [gr-qc])Mannheim, P.D., (1999) ASP Conf. Ser., 182, p. 413Mannheim, P.D., (1998) Curvature and Cosmic Repulsion, , (arXiv:9803135)Hayasaka, H., Minami, Y., (1999) AIP Conf. Proc., 458, p. 1040Deser, S., Ryzhov, A.V., (2005) Class. Quantum Grav., 22 (16), p. 3315Gasperini, M., (1998) Gen. Relativ. Gravit., 30, p. 1703Liu, C.-Y., Lee, D.S., Lin, C.Y., (2017) Class. Quantum Grav., 34 (23)Novikov, I.D., Bisnovatyi-Kogan, G.S., Novikov, D.I., (2018) Phys. Rev., 98Phillips, P.R., (2015) Mon. Not. R. Astron. Soc., 448, p. 681Resca, L., (2018) Eur. J. Phys., 39 (3)Woszczyna, A., Kutschera, M., Kubis, S., Czaja, W., Plaszczyk, P., Golda, Z.A., (2016) Gen. Relativ. Gravit., 48, p. 5Pugliese, D., Quevedo, H., Ruffini, R., (2013) Phys. Rev., 88Burinskii, A., (2008) Grav. Cosm., 14, pp. 109-122Pugliese, D., Quevedo, H., Ruffini, R., (2011) Phys. Rev., 84Pugliese, D., Quevedo, H., Ruffini, R., (2011) Phys. Rev., 84Binney, J., Tremaine, S., (2011) Galactic Dynamics, p. 36. , (Princeton, NJ: Princeton University Press)Tolman, R.C., (1939) Phys. Rev., 55, p. 364Raghoonundun, A.M., Hobill, D.W., (2016) The Geometrical Structure of the Tolman VII Solution, , ( [gr-qc])Ovalle, J., Linares, F., (2013) Phys. Rev., 88Macfadden, P., (2006) PhD Thesis, , A signature of higher dimensions at the cosmic singularityhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9128/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9128oai:repositorio.utb.edu.co:20.500.12585/91282021-02-02 15:20:06.475Repositorio Institucional UTBrepositorioutb@utb.edu.co