Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation

This express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum po...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Garrido Arévalo, Víctor Manuel
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9535
Acceso en línea:
https://hdl.handle.net/20.500.12585/9535
https://ieeexplore.ieee.org/document/8664198
Palabra clave:
Direct current networks
Newton–Raphson power flow
Pure-algorithmic methodology
Sensitivity index
Voltage stability margin
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_6542e24135e5b823f572e1bb9766c78e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9535
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
title Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
spellingShingle Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
Direct current networks
Newton–Raphson power flow
Pure-algorithmic methodology
Sensitivity index
Voltage stability margin
title_short Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
title_full Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
title_fullStr Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
title_full_unstemmed Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
title_sort Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garrido Arévalo, Víctor Manuel
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garrido Arévalo, Víctor Manuel
dc.subject.keywords.spa.fl_str_mv Direct current networks
Newton–Raphson power flow
Pure-algorithmic methodology
Sensitivity index
Voltage stability margin
topic Direct current networks
Newton–Raphson power flow
Pure-algorithmic methodology
Sensitivity index
Voltage stability margin
description This express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum power consumption of the dc network. The recursive solution approach corresponds to a sequential power flow approach by incrementing all values of the power consumptions uniformly. Simulation results validate the efficiency of the proposed method in comparison to the large-scale nonlinear solvers available in the general algebraic modeling system optimization package. The MATLAB programming environment was employed for implementing the proposed recursive Newton-Raphson method.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-03-11
dc.date.accessioned.none.fl_str_mv 2020-11-04T20:54:01Z
dc.date.available.none.fl_str_mv 2020-11-04T20:54:01Z
dc.date.submitted.none.fl_str_mv 2020-11-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9535
dc.identifier.url.none.fl_str_mv https://ieeexplore.ieee.org/document/8664198
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2019.2904211
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211.
10.1109/TCSII.2019.2904211
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9535
https://ieeexplore.ieee.org/document/8664198
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 2, Feb. 2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/1/74.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/3/74.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/4/74.pdf.jpg
bitstream.checksum.fl_str_mv 0afb4de81f3c1adea1b2a0dc9851b4b7
e20ad307a1c5f3f25af9304a7a7c86b6
9ce8b180d55649f35b529fc163dcc1b0
58f340cb017a4d896b120304972f9b7a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021732398268416
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Garrido Arévalo, Víctor Manuel5c72390f-bbbf-414d-bd59-09c2e872bf1d2020-11-04T20:54:01Z2020-11-04T20:54:01Z2019-03-112020-11-03O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211.https://hdl.handle.net/20.500.12585/9535https://ieeexplore.ieee.org/document/866419810.1109/TCSII.2019.2904211Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum power consumption of the dc network. The recursive solution approach corresponds to a sequential power flow approach by incrementing all values of the power consumptions uniformly. Simulation results validate the efficiency of the proposed method in comparison to the large-scale nonlinear solvers available in the general algebraic modeling system optimization package. The MATLAB programming environment was employed for implementing the proposed recursive Newton-Raphson method.application/pdfengIEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 2, Feb. 2020)Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current networksNewton–Raphson power flowPure-algorithmic methodologySensitivity indexVoltage stability margininfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresA. A. Mohamed and B. Venkatesh, "Line-wise power flow and voltage collapse", IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3768-3778, Jul. 2018.L. Zheng, W. Hu, Y. Min and J. Ma, "A novel method to monitor and predict voltage collapse: The critical transitions approach", IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1184-1194, Mar. 2018.J. E. Machado, R. Griñó, N. Barabanov, R. Ortega and B. Polyak, "On existence of equilibria of multi-port linear AC networks with constant-power loads", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 64, no. 10, pp. 2772-2782, Oct. 2017.S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State-of-the-art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.A. Garcés, J. Herrera, W. Gil-González and O. Montoya, "Small-signal stability in low-voltage DC-grids", Proc. IEEE ANDESCON, pp. 1-5, 2018.O. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, [online] Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609.N. Barabanov, R. Ortega, R. Griñó and B. Polyak, "On existence and stability of equilibria of linear time-invariant systems with constant power loads", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 63, no. 1, pp. 114-121, Jan. 2016.J. W. Simpson-Porco, F. Dorfler and F. Bullo, "On resistive networks of constant-power devices", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp. 811-815, Aug. 2015.A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Elect. Power Syst. Res., vol. 151, pp. 149-153, Oct. 2017.A. Garcés, "On the convergence of Newton’s method in power flow study for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018.H. Zhang, V. Vittal, G. T. Heydt and J. Quintero, "A relaxed AC optimal power flow model based on a Taylor series", Proc. IEEE Innov. Smart Grid Technol. Asia (ISGT Asia), pp. 1-5, 2013.C. Gavriluta, I. Candela, C. Citro, A. Luna and P. Rodriguez, "Design considerations for primary control in multi-terminal VSC-HVDC grids", Elect. Power Syst. Res., vol. 122, pp. 33-41, May 2015.O. D. Montoya, W. Gil-González and A. Garces, "Optimal power flow on DC microgrids: A quadratic convex approximation", IEEE Trans. Circuits Syst. II Exp. Briefs, [online] Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609.L. F. Grisales-Noreña, D. González-Montoya and C. A. Ramos-Paja, "Optimal sizing and location of distributed generators based on PBIL and PSO techniques", Energies, vol. 11, no. 4, pp. 1018, Feb. 2018.J. Li, F. Liu, Z. Wang, S. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL74.pdf74.pdfapplication/pdf104294https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/1/74.pdf0afb4de81f3c1adea1b2a0dc9851b4b7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT74.pdf.txt74.pdf.txtExtracted texttext/plain1037https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/3/74.pdf.txt9ce8b180d55649f35b529fc163dcc1b0MD53THUMBNAIL74.pdf.jpg74.pdf.jpgGenerated Thumbnailimage/jpeg46786https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/4/74.pdf.jpg58f340cb017a4d896b120304972f9b7aMD5420.500.12585/9535oai:repositorio.utb.edu.co:20.500.12585/95352023-05-26 10:06:08.691Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=