Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation
This express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum po...
- Autores:
-
Montoya, Oscar Danilo
Gil-González, Walter
Garrido Arévalo, Víctor Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9535
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9535
https://ieeexplore.ieee.org/document/8664198
- Palabra clave:
- Direct current networks
Newton–Raphson power flow
Pure-algorithmic methodology
Sensitivity index
Voltage stability margin
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_6542e24135e5b823f572e1bb9766c78e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9535 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
title |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
spellingShingle |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation Direct current networks Newton–Raphson power flow Pure-algorithmic methodology Sensitivity index Voltage stability margin |
title_short |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
title_full |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
title_fullStr |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
title_full_unstemmed |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
title_sort |
Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Garrido Arévalo, Víctor Manuel |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Garrido Arévalo, Víctor Manuel |
dc.subject.keywords.spa.fl_str_mv |
Direct current networks Newton–Raphson power flow Pure-algorithmic methodology Sensitivity index Voltage stability margin |
topic |
Direct current networks Newton–Raphson power flow Pure-algorithmic methodology Sensitivity index Voltage stability margin |
description |
This express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum power consumption of the dc network. The recursive solution approach corresponds to a sequential power flow approach by incrementing all values of the power consumptions uniformly. Simulation results validate the efficiency of the proposed method in comparison to the large-scale nonlinear solvers available in the general algebraic modeling system optimization package. The MATLAB programming environment was employed for implementing the proposed recursive Newton-Raphson method. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-03-11 |
dc.date.accessioned.none.fl_str_mv |
2020-11-04T20:54:01Z |
dc.date.available.none.fl_str_mv |
2020-11-04T20:54:01Z |
dc.date.submitted.none.fl_str_mv |
2020-11-03 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9535 |
dc.identifier.url.none.fl_str_mv |
https://ieeexplore.ieee.org/document/8664198 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TCSII.2019.2904211 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211. 10.1109/TCSII.2019.2904211 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9535 https://ieeexplore.ieee.org/document/8664198 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 2, Feb. 2020) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/1/74.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/3/74.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/4/74.pdf.jpg |
bitstream.checksum.fl_str_mv |
0afb4de81f3c1adea1b2a0dc9851b4b7 e20ad307a1c5f3f25af9304a7a7c86b6 9ce8b180d55649f35b529fc163dcc1b0 58f340cb017a4d896b120304972f9b7a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021732398268416 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Garrido Arévalo, Víctor Manuel5c72390f-bbbf-414d-bd59-09c2e872bf1d2020-11-04T20:54:01Z2020-11-04T20:54:01Z2019-03-112020-11-03O. D. Montoya, W. Gil-González and V. M. Garrido, "Voltage Stability Margin in DC Grids With CPLs: A Recursive Newton–Raphson Approximation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 300-304, Feb. 2020, doi: 10.1109/TCSII.2019.2904211.https://hdl.handle.net/20.500.12585/9535https://ieeexplore.ieee.org/document/866419810.1109/TCSII.2019.2904211Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis express brief addresses the voltage collapse problem in direct-current (dc) networks by using a recursive heuristic search algorithm based on the Newton-Raphson method. The determinant of the Jacobian matrix in the Newton-Raphson method is used as a sensitivity index to determine the maximum power consumption of the dc network. The recursive solution approach corresponds to a sequential power flow approach by incrementing all values of the power consumptions uniformly. Simulation results validate the efficiency of the proposed method in comparison to the large-scale nonlinear solvers available in the general algebraic modeling system optimization package. The MATLAB programming environment was employed for implementing the proposed recursive Newton-Raphson method.application/pdfengIEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 2, Feb. 2020)Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current networksNewton–Raphson power flowPure-algorithmic methodologySensitivity indexVoltage stability margininfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresA. A. Mohamed and B. Venkatesh, "Line-wise power flow and voltage collapse", IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3768-3778, Jul. 2018.L. Zheng, W. Hu, Y. Min and J. Ma, "A novel method to monitor and predict voltage collapse: The critical transitions approach", IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1184-1194, Mar. 2018.J. E. Machado, R. Griñó, N. Barabanov, R. Ortega and B. Polyak, "On existence of equilibria of multi-port linear AC networks with constant-power loads", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 64, no. 10, pp. 2772-2782, Oct. 2017.S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State-of-the-art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.A. Garcés, J. Herrera, W. Gil-González and O. Montoya, "Small-signal stability in low-voltage DC-grids", Proc. IEEE ANDESCON, pp. 1-5, 2018.O. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, [online] Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609.N. Barabanov, R. Ortega, R. Griñó and B. Polyak, "On existence and stability of equilibria of linear time-invariant systems with constant power loads", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 63, no. 1, pp. 114-121, Jan. 2016.J. W. Simpson-Porco, F. Dorfler and F. Bullo, "On resistive networks of constant-power devices", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp. 811-815, Aug. 2015.A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Elect. Power Syst. Res., vol. 151, pp. 149-153, Oct. 2017.A. Garcés, "On the convergence of Newton’s method in power flow study for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018.H. Zhang, V. Vittal, G. T. Heydt and J. Quintero, "A relaxed AC optimal power flow model based on a Taylor series", Proc. IEEE Innov. Smart Grid Technol. Asia (ISGT Asia), pp. 1-5, 2013.C. Gavriluta, I. Candela, C. Citro, A. Luna and P. Rodriguez, "Design considerations for primary control in multi-terminal VSC-HVDC grids", Elect. Power Syst. Res., vol. 122, pp. 33-41, May 2015.O. D. Montoya, W. Gil-González and A. Garces, "Optimal power flow on DC microgrids: A quadratic convex approximation", IEEE Trans. Circuits Syst. II Exp. Briefs, [online] Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8469013&isnumber=4358609.L. F. Grisales-Noreña, D. González-Montoya and C. A. Ramos-Paja, "Optimal sizing and location of distributed generators based on PBIL and PSO techniques", Energies, vol. 11, no. 4, pp. 1018, Feb. 2018.J. Li, F. Liu, Z. Wang, S. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL74.pdf74.pdfapplication/pdf104294https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/1/74.pdf0afb4de81f3c1adea1b2a0dc9851b4b7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT74.pdf.txt74.pdf.txtExtracted texttext/plain1037https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/3/74.pdf.txt9ce8b180d55649f35b529fc163dcc1b0MD53THUMBNAIL74.pdf.jpg74.pdf.jpgGenerated Thumbnailimage/jpeg46786https://repositorio.utb.edu.co/bitstream/20.500.12585/9535/4/74.pdf.jpg58f340cb017a4d896b120304972f9b7aMD5420.500.12585/9535oai:repositorio.utb.edu.co:20.500.12585/95352023-05-26 10:06:08.691Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |