Experimental and numerical analysis of a water emptying pipeline using different air valves
The emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8740
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8740
- Palabra clave:
- Air pocket
Air valve
Air-water
Emptying
Hydraulic model
Pipeline
Water hammer
Water supply
Hydraulic models
Pipelines
Water hammer
Water supply
Air pockets
Air valves
Air-water
Emptying
Experimental and numerical analysis
Hydraulic characteristic
Subatmospheric pressures
Thermodynamic formulation
Air
Distribution system
Equipment component
Experimental study
Hydraulic structure
Installation
Numerical method
Numerical model
Operations technology
Pipeline
Water supply
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_64c9262fbacc2d98487635356e732ab1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8740 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
title |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
spellingShingle |
Experimental and numerical analysis of a water emptying pipeline using different air valves Air pocket Air valve Air-water Emptying Hydraulic model Pipeline Water hammer Water supply Hydraulic models Pipelines Water hammer Water supply Air pockets Air valves Air-water Emptying Experimental and numerical analysis Hydraulic characteristic Subatmospheric pressures Thermodynamic formulation Air Distribution system Equipment component Experimental study Hydraulic structure Installation Numerical method Numerical model Operations technology Pipeline Water supply |
title_short |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
title_full |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
title_fullStr |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
title_full_unstemmed |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
title_sort |
Experimental and numerical analysis of a water emptying pipeline using different air valves |
dc.subject.keywords.none.fl_str_mv |
Air pocket Air valve Air-water Emptying Hydraulic model Pipeline Water hammer Water supply Hydraulic models Pipelines Water hammer Water supply Air pockets Air valves Air-water Emptying Experimental and numerical analysis Hydraulic characteristic Subatmospheric pressures Thermodynamic formulation Air Distribution system Equipment component Experimental study Hydraulic structure Installation Numerical method Numerical model Operations technology Pipeline Water supply |
topic |
Air pocket Air valve Air-water Emptying Hydraulic model Pipeline Water hammer Water supply Hydraulic models Pipelines Water hammer Water supply Air pockets Air valves Air-water Emptying Experimental and numerical analysis Hydraulic characteristic Subatmospheric pressures Thermodynamic formulation Air Distribution system Equipment component Experimental study Hydraulic structure Installation Numerical method Numerical model Operations technology Pipeline Water supply |
description |
The emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to install air valves in pipelines. However, if air valves are not adequately designed, then the risk in pipelines continues. In this research, a mathematical model is developed to simulate an emptying process in pipelines that can be used for planning this type of operation. The one-dimensional proposed model analyzes the water phase propagation by a new rigid model and the air pockets effect using thermodynamic formulations. The proposed model is validated through measurements of the air pocket absolute pressure, the water velocity and the length of the emptying columns in an experimental facility. Results show that the proposed model can accurately predict the hydraulic characteristic variables. © 2017 by the authors. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:14Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:14Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Water (Switzerland); Vol. 9, Núm. 2 |
dc.identifier.issn.none.fl_str_mv |
2073-4441 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8740 |
dc.identifier.doi.none.fl_str_mv |
10.3390/w9020098 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Water (Switzerland); Vol. 9, Núm. 2 2073-4441 10.3390/w9020098 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8740 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85013031400&doi=10.3390%2fw9020098&partnerID=40&md5=c76ae6c3901c2952accd2f90e47f28ae Scopus 57193337460 Scopus 56074282700 Scopus 57205420202 Scopus 35568240000 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/1/DOI10_3390w9020098.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/4/DOI10_3390w9020098.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/5/DOI10_3390w9020098.pdf.jpg |
bitstream.checksum.fl_str_mv |
fd61bf34bdc74a0a8607fe278014b5a6 a561222a892ebd6d0fe68e5b0eba5f2f 51a15e45d50e33129a67c5e923327964 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021777077043200 |
spelling |
2019-11-06T19:05:14Z2019-11-06T19:05:14Z2017Water (Switzerland); Vol. 9, Núm. 22073-4441https://hdl.handle.net/20.500.12585/874010.3390/w9020098Universidad Tecnológica de BolívarRepositorio UTBThe emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to install air valves in pipelines. However, if air valves are not adequately designed, then the risk in pipelines continues. In this research, a mathematical model is developed to simulate an emptying process in pipelines that can be used for planning this type of operation. The one-dimensional proposed model analyzes the water phase propagation by a new rigid model and the air pockets effect using thermodynamic formulations. The proposed model is validated through measurements of the air pocket absolute pressure, the water velocity and the length of the emptying columns in an experimental facility. Results show that the proposed model can accurately predict the hydraulic characteristic variables. © 2017 by the authors.Recurso electrónicoapplication/pdfengMDPI AGhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85013031400&doi=10.3390%2fw9020098&partnerID=40&md5=c76ae6c3901c2952accd2f90e47f28aeScopus 57193337460Scopus 56074282700Scopus 57205420202Scopus 35568240000Experimental and numerical analysis of a water emptying pipeline using different air valvesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air pocketAir valveAir-waterEmptyingHydraulic modelPipelineWater hammerWater supplyHydraulic modelsPipelinesWater hammerWater supplyAir pocketsAir valvesAir-waterEmptyingExperimental and numerical analysisHydraulic characteristicSubatmospheric pressuresThermodynamic formulationAirDistribution systemEquipment componentExperimental studyHydraulic structureInstallationNumerical methodNumerical modelOperations technologyPipelineWater supplyCoronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Besharat M.Ramos, H.M.(2001) Manual ofWater Supply Practices-M51: Air-Release, Air-Vacuum, and Combination Air Valves, , 1st ed.American Water Works Association: Denver, CO, USARamezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2016) J. Water Resour. Plan. Manag., 141Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient phenomenon during the emptying process of a single pipe with water-air interaction. (2016) J. Hydraul. Res., , submittedTijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) J. Press. Vessel Technol., 138Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vuckovíc, S., Hou, Q., Tijsseling, A., Van't Westende, J., Emptying of large-scale pipeline by pressurized air (2012) J. Hydraul. Eng., 138, pp. 1090-1100Fuertes, V.S., Hydraulic Transients with Entrapped Air Pockets. (2001) Ph.D. Thesis, Department of Hydraulic Engineering, , Polytechnic University of Valencia, Valencia, SpainBesharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) J. Water Supply Res. Technol. AQUA, 65, pp. 116-126Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines (2016) Water, 8, p. 25Balacco, G., Apollonio, C., Piccinni, A.F., Experimental Analysis of Air Valve Behaviour During Hydraulic Transients (2015) J. Appl. Water Eng. Res., 3, pp. 3-11Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) J. Hydraul. Eng., 139, pp. 949-959Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P., García-Serra, J., Pipeline start-up with entrapped air (1999) J. Hydraul. Res., 37, pp. 579-590Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Eng. Appl. Comput. Fluid Mech., 5, pp. 127-140Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C., CFD modeling of transient flow in pressurized pipes (2016) Comput. Fluids, 126, pp. 129-140Abreu, J., Cabrera, E., Izquierdo, J., García-Serra, J., Flow Modeling in Pressurized Systmes Revisited (1999) J. Hydraul. Eng., 125, pp. 1154-1169Martins, S.C., Ramos, H.M., Almeida, A.B., Mathematical Modeling of Pressurized System Behaviour with Entrapped Air. (2010) In Environmental Hydraulics: Theoretical, Experimental and Computational Solutions, pp. 61-64. , CRC Press: Boca Raton, FL, USAMartins, S.C., Ramos, H.M., Almeida, A.B., Computational Evaluation of Hydraulic System Behaviour with Entrapped Air under Rapid Pressurization (2010) Integrating Water Systems, pp. 241-247. , CRC Press: Boca Raton, FL, USAFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical modelling of pipelines with air pockets and air valves (2016) Can. J. Civ. Eng., 43, pp. 1052-1061Zhou, L., Liu, D., Experimental investigation of entrapped air pocket in a partially full water pipe (2013) J. Hydraul. Res., 51, pp. 469-474Covas, D., Stoianov, I., Ramos, H.M., Graham, N., Maksimovi`c, C., Butler, D., Water hammer in pressurized polyethylene pipes:conceptual model and experimental analysis (2010) Urban Water J., 1, pp. 177-197Liou, C., Hunt, W.A., Filling of pipelines with undulating elevation profiles (1996) J. Hydraul. Eng., 122, pp. 534-539Bousso, S., Daynou, M., Fuamba, M., Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature (2013) J. Hydraul. Eng., 139, pp. 385-396Leon, A., Ghidaoui, M., Schmidt, A., Garcia, M., A robust two-equation model for transient-mixed flows (2010) J. Hydraul. Res., 48, pp. 44-56Wylie, E., Streeter, V., (1993) Fluid Transients in Systems, , Prentice Hall: Englewood Cliffs, NJ, USAVasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) J. Hydraul. Eng., 134, pp. 84-992Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of Liquid Length Variation in Hydraulic Transients (1992) J. Hydraul. Res., 118, pp. 1639-1650Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) J. Hydraul. Eng., 139, pp. 1041-1051Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual analogy for modelling entrapped air action in hydraulic systems (2015) J. Hydraul. Res., 53, pp. 678-686Martin, C.S., Entrapped Air in Pipelines. (1976) In Proceedings of the Second International Conference on Pressure Surges, , London, UK, 22-24 SeptemberIglesias-Rey, P.L., Fuertes-Miquel, V.S., García-Mares, F.J., Martínez-Solano, F.J., Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. (2014) In Proceedings of the 16th Conference on Water Distribution System Analysis, pp. 1412-1419. , WDSA 2014, Bari, Italy 14-17http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_3390w9020098.pdfapplication/pdf1367618https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/1/DOI10_3390w9020098.pdffd61bf34bdc74a0a8607fe278014b5a6MD51TEXTDOI10_3390w9020098.pdf.txtDOI10_3390w9020098.pdf.txtExtracted texttext/plain36316https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/4/DOI10_3390w9020098.pdf.txta561222a892ebd6d0fe68e5b0eba5f2fMD54THUMBNAILDOI10_3390w9020098.pdf.jpgDOI10_3390w9020098.pdf.jpgGenerated Thumbnailimage/jpeg86658https://repositorio.utb.edu.co/bitstream/20.500.12585/8740/5/DOI10_3390w9020098.pdf.jpg51a15e45d50e33129a67c5e923327964MD5520.500.12585/8740oai:repositorio.utb.edu.co:20.500.12585/87402023-05-26 09:43:02.814Repositorio Institucional UTBrepositorioutb@utb.edu.co |