Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring

This paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such a...

Full description

Autores:
Rodriguez-Cabal, M.A
Grisales-Noreña, L. F.
Ramírez-Vanegas, C. A.
Arias-Londoño, A.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10677
Acceso en línea:
https://hdl.handle.net/20.500.12585/10677
https://doi.org/10.32397/tesea.vol2.n2.5
Palabra clave:
621.3
Mechanical analysis
Machine elements design
Sine-cosine algorithm
Nonlinear optimization model;
Closed coil helical spring
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by/4.0/
id UTB2_64a0f01d29990e97092525beed981cda
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10677
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
title Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
spellingShingle Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
621.3
Mechanical analysis
Machine elements design
Sine-cosine algorithm
Nonlinear optimization model;
Closed coil helical spring
LEMB
title_short Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
title_full Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
title_fullStr Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
title_full_unstemmed Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
title_sort Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
dc.creator.fl_str_mv Rodriguez-Cabal, M.A
Grisales-Noreña, L. F.
Ramírez-Vanegas, C. A.
Arias-Londoño, A.
dc.contributor.author.none.fl_str_mv Rodriguez-Cabal, M.A
Grisales-Noreña, L. F.
Ramírez-Vanegas, C. A.
Arias-Londoño, A.
dc.subject.ddc.none.fl_str_mv 621.3
topic 621.3
Mechanical analysis
Machine elements design
Sine-cosine algorithm
Nonlinear optimization model;
Closed coil helical spring
LEMB
dc.subject.keywords.es_CO.fl_str_mv Mechanical analysis
Machine elements design
Sine-cosine algorithm
Nonlinear optimization model;
Closed coil helical spring
dc.subject.armarc.none.fl_str_mv LEMB
description This paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such as maximum working load, shear stress, and minimum diameter requirements, among other. The resulting mathematical formulation is a complex nonlinear and non-convex optimization model that is typically addressed in literature with trial and error methods or heuristic algorithms. To solve this problem efficiently, the SCA is proposed in this research. This optimization algorithm belongs to the family of the metaheuristic optimization techniques, it works with controlled random processes guided by sine and cosine trigonometric functions, that allows exploring and exploiting the solution space in order to find the best solution to the optimization problem. By presenting as main advantage an easy implementation at any programming language using sequential quadratic programming; eliminating the need to uses specialized and costly software. Numerical results demonstrating that the proposes SCA allows reaching lower spring volume values in comparison with literature approaches, such as genetic algorithms, particle swarm optimization methods, among others. All the numerical simulations have been implemented in the MATLAB software.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-21T21:30:03Z
dc.date.available.none.fl_str_mv 2022-04-21T21:30:03Z
dc.date.issued.none.fl_str_mv 2022-01-18
dc.date.submitted.none.fl_str_mv 2022-04-21
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10677
dc.identifier.doi.none.fl_str_mv https://doi.org/10.32397/tesea.vol2.n2.5
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10677
https://doi.org/10.32397/tesea.vol2.n2.5
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessRights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.publisher.discipline.es_CO.fl_str_mv Ingeniería Eléctrica
dc.source.es_CO.fl_str_mv Transactions on Energy Systems and Engineering Applications
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/1/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/4/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/5/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpg
bitstream.checksum.fl_str_mv 5f8ae55a197833089193a685ac9d2d2c
0175ea4a2d4caec4bbcc37e300941108
e20ad307a1c5f3f25af9304a7a7c86b6
090da7b849532344aec48ea0414290de
fcd71eb1a7d2d61ec86fe5911d132c12
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021790082531328
spelling Rodriguez-Cabal, M.A5df7da91-1fab-4426-9d26-6314c8048061600Grisales-Noreña, L. F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Ramírez-Vanegas, C. A.ef47b997-ab0d-4753-9356-880125af5e73Arias-Londoño, A.31bcb75b-a482-4477-aacb-274dc59768d32022-04-21T21:30:03Z2022-04-21T21:30:03Z2022-01-182022-04-21Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458https://hdl.handle.net/20.500.12585/10677https://doi.org/10.32397/tesea.vol2.n2.5Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such as maximum working load, shear stress, and minimum diameter requirements, among other. The resulting mathematical formulation is a complex nonlinear and non-convex optimization model that is typically addressed in literature with trial and error methods or heuristic algorithms. To solve this problem efficiently, the SCA is proposed in this research. This optimization algorithm belongs to the family of the metaheuristic optimization techniques, it works with controlled random processes guided by sine and cosine trigonometric functions, that allows exploring and exploiting the solution space in order to find the best solution to the optimization problem. By presenting as main advantage an easy implementation at any programming language using sequential quadratic programming; eliminating the need to uses specialized and costly software. Numerical results demonstrating that the proposes SCA allows reaching lower spring volume values in comparison with literature approaches, such as genetic algorithms, particle swarm optimization methods, among others. All the numerical simulations have been implemented in the MATLAB software.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Transactions on Energy Systems and Engineering Applications621.3Mechanical analysisMachine elements designSine-cosine algorithmNonlinear optimization model;Closed coil helical springLEMBApplication of the sine-cosine algorithm to the optimal design of a closed coil helical springinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Cartagena de IndiasIngeniería EléctricaInvestigadoresG. P. Garcia, “Una teoría general de análisis en el diseño de elementos de máquinas, ”Ingeniería e Investigación, vol. 0, no. 13, p. 31–42,2010M. A. Rodriguez-Cabal, J. A. Mar ́ın, L. F. Grisales-Noreña, O. D. Montoya, and J. A. S. Del Rio, “Optimization of a drive shaft using PSOalgorithm,”WSEAS Transactions on Applied and Theoretical Mechanics,vol. 13, pp. 130–139, 2018.R. G. Budynas and J. K. Nisbett, Shigley ́s Mechanical Engineering Design. New York: McGRAW-HILL, 9 ed., 2011S. Bhaumik, R. Rangaraju, M. Parameswara, M. Venkataswamy, T. Bhaskaran, and R. Krishnan, “Fatigue failure of a hollow powertransmission shaft,”Engineering Failure Analysis, vol. 9, pp. 457–467,aug 2002M. A. Rodriguez-Cabal, L. F. Grisales-Noreña, J. G. Ardila-Marín, and O. D. Montoya-Giraldo, “Optimal design of transmission shafts:a continuous genetic algorithm approach, ”Statistics, Optimization & Information Computing, vol. 7, dec 2019.H. N. Ghafil and K. Jármai, “Dynamic differential annealed opti-mization: New metaheuristic optimization algorithm for engineering applications, ”Applied Soft Computing, vol. 93, p. 106392, aug 2020.M. Kohli and S. Arora, “Chaotic grey wolf optimization algorithm forconstrained optimization problems, ”Journal of Computational Designand Engineering, vol. 5, pp. 458–472, mar 2017.M. Taktak, K. Omheni, A. Aloui, F. Dammak, and M. Haddar, “Dynamic optimization design of a cylindrical helical spring, ”Applied Acoustics,vol. 77, pp. 178–183, mar 2014.L. Wu, L. Chen, H. Fu, Q. Jiang, X. Wu, and Y. Tang, “Carbon fibercomposite multistrand helical springs with adjustable spring constant: design and mechanism studies, ”Journal of Materials Research andTechnology, vol. 9, pp. 5067–5076, may 2020.J. Ke, Z. yu Wu, Y. sheng Liu, Z. Xiang, and X. dong Hu, “De-sign method, performance investigation and manufacturing process of composite helical springs: A review, ”Composite Structures, vol. 252, p. 112747, nov 2020.B. Thamaraikannan and V. Thirunavukkarasu, “Design Optimizationof Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator, ”Mathemati-cal Problems in Engineering, vol. 2014, pp. 1–10, 2014.L. F. Grisales-Noreña, O. D. Garzón-Rivera, J. A. Ocampo-Toro, C. A. Ramos-Paja, and M. A. Rodriguez-Cabal, “Metaheuristic optimizationmethods for optimal power flow analysis in DC distribution networks,”Transactions on Energy Systems and Engineering Applications, vol. 1,pp. 13–31, dec 2020.O. D. Montoya, A. Molina-Cabrera, H. R. Chamorro, L. Alvarado-Barrios, and E. Rivas-Trujillo, “A Hybrid Approach Based on SOCPand the Discrete Version of the SCA for Optimal Placement and SizingDGs in AC Distribution Networks,”Electronics, vol. 10, p. 26, dec 2020.S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimizationproblems, ”Knowledge-Based Systems, vol. 96, pp. 120–133, mar 2016.H. Huang, X. Feng, A. A. Heidari, Y. Xu, M. Wang, G. Liang, H. Chen,and X. Cai, “Rationalized Sine Cosine Optimization With EfficientSearching Patterns,”IEEE Access, vol. 8, pp. 61471–61490, 2020A.-F. Attia, R. A. E. Sehiemy, and H. M. Hasanien, “Optimal powerflow solution in power systems using a novel Sine-Cosine algorithm,”Int. J. Electr. Power Energy Syst., vol. 99, pp. 331–343, jul 2018.J. A. Giraldo, O. D. Montoya, L. F. Grisales-Noreña, W. Gil-González, and M. Holgu ́ın, “Optimal power flow solution in direct current gridsusing Sine-Cosine algorithm,”J. Phys. Conf. Ser., vol. 1403, p. 012009,nov 2019.A. I. Hafez, H. M. Zawbaa, E. Emary, and A. E. Hassanien, “Sine cosineoptimization algorithm for feature selection,” in2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, aug 2016.R. M. Rizk-Allah, “An improved sine–cosine algorithm based on or-thogonal parallel information for global optimization,”Soft Computing, vol. 23, pp. 7135–7161, jul 2018S. Gupta, K. Deep, H. Moayedi, L. K. Foong, and A. Assad, “Sine cosinegrey wolf optimizer to solve engineering design problems,”Engineeringwith Computers, feb 2020.M. L. Manrique, O. D. Montoya, V. M. Garrido, L. F. Grisales-Noreña, and W. Gil-González, “Sine-Cosine Algorithm for OPF Analysis in Dis-tribution Systems to Size Distributed Generators,” in Communications in Computer and Information Science, pp. 28–39, Springer International Publishing, 2019.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdfApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdfapplication/pdf256231https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/1/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf5f8ae55a197833089193a685ac9d2d2cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txtApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txtExtracted texttext/plain29081https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/4/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txt090da7b849532344aec48ea0414290deMD54THUMBNAILApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgGenerated Thumbnailimage/jpeg124482https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/5/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgfcd71eb1a7d2d61ec86fe5911d132c12MD5520.500.12585/10677oai:repositorio.utb.edu.co:20.500.12585/106772022-04-22 00:18:29.367Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=