Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring
This paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such a...
- Autores:
-
Rodriguez-Cabal, M.A
Grisales-Noreña, L. F.
Ramírez-Vanegas, C. A.
Arias-Londoño, A.
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10677
- Palabra clave:
- 621.3
Mechanical analysis
Machine elements design
Sine-cosine algorithm
Nonlinear optimization model;
Closed coil helical spring
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/4.0/
id |
UTB2_64a0f01d29990e97092525beed981cda |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10677 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
title |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
spellingShingle |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring 621.3 Mechanical analysis Machine elements design Sine-cosine algorithm Nonlinear optimization model; Closed coil helical spring LEMB |
title_short |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
title_full |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
title_fullStr |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
title_full_unstemmed |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
title_sort |
Application of the sine-cosine algorithm to the optimal design of a closed coil helical spring |
dc.creator.fl_str_mv |
Rodriguez-Cabal, M.A Grisales-Noreña, L. F. Ramírez-Vanegas, C. A. Arias-Londoño, A. |
dc.contributor.author.none.fl_str_mv |
Rodriguez-Cabal, M.A Grisales-Noreña, L. F. Ramírez-Vanegas, C. A. Arias-Londoño, A. |
dc.subject.ddc.none.fl_str_mv |
621.3 |
topic |
621.3 Mechanical analysis Machine elements design Sine-cosine algorithm Nonlinear optimization model; Closed coil helical spring LEMB |
dc.subject.keywords.es_CO.fl_str_mv |
Mechanical analysis Machine elements design Sine-cosine algorithm Nonlinear optimization model; Closed coil helical spring |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such as maximum working load, shear stress, and minimum diameter requirements, among other. The resulting mathematical formulation is a complex nonlinear and non-convex optimization model that is typically addressed in literature with trial and error methods or heuristic algorithms. To solve this problem efficiently, the SCA is proposed in this research. This optimization algorithm belongs to the family of the metaheuristic optimization techniques, it works with controlled random processes guided by sine and cosine trigonometric functions, that allows exploring and exploiting the solution space in order to find the best solution to the optimization problem. By presenting as main advantage an easy implementation at any programming language using sequential quadratic programming; eliminating the need to uses specialized and costly software. Numerical results demonstrating that the proposes SCA allows reaching lower spring volume values in comparison with literature approaches, such as genetic algorithms, particle swarm optimization methods, among others. All the numerical simulations have been implemented in the MATLAB software. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-04-21T21:30:03Z |
dc.date.available.none.fl_str_mv |
2022-04-21T21:30:03Z |
dc.date.issued.none.fl_str_mv |
2022-01-18 |
dc.date.submitted.none.fl_str_mv |
2022-04-21 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.es_CO.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.es_CO.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.es_CO.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.es_CO.fl_str_mv |
Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10677 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.32397/tesea.vol2.n2.5 |
dc.identifier.instname.es_CO.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.es_CO.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10677 https://doi.org/10.32397/tesea.vol2.n2.5 |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessRights.es_CO.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Atribución 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.place.es_CO.fl_str_mv |
Cartagena de Indias |
dc.publisher.discipline.es_CO.fl_str_mv |
Ingeniería Eléctrica |
dc.source.es_CO.fl_str_mv |
Transactions on Energy Systems and Engineering Applications |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/1/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/4/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/5/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpg |
bitstream.checksum.fl_str_mv |
5f8ae55a197833089193a685ac9d2d2c 0175ea4a2d4caec4bbcc37e300941108 e20ad307a1c5f3f25af9304a7a7c86b6 090da7b849532344aec48ea0414290de fcd71eb1a7d2d61ec86fe5911d132c12 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021790082531328 |
spelling |
Rodriguez-Cabal, M.A5df7da91-1fab-4426-9d26-6314c8048061600Grisales-Noreña, L. F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Ramírez-Vanegas, C. A.ef47b997-ab0d-4753-9356-880125af5e73Arias-Londoño, A.31bcb75b-a482-4477-aacb-274dc59768d32022-04-21T21:30:03Z2022-04-21T21:30:03Z2022-01-182022-04-21Rodríguez Cabal, M., Grisales Noreña, L., Ramírez Vanegas, C., & Arias Londoño, A. (2022). Application of the Sine-Cosine Algorithm to the Optimal Design of a Closed Coil Helical Spring. Transactions on Energy Systems and Engineering Applications, 2(2), 33-38. Retrieved from https://revistas.utb.edu.co/index.php/tesea/article/view/458https://hdl.handle.net/20.500.12585/10677https://doi.org/10.32397/tesea.vol2.n2.5Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes the application of the sinecosine algorithm (SCA) to the optimal design of a closed coil helical spring. The optimization problem addressed corresponds to the minimization of total spring volume subject to physical constraints that represents the closed coil helical spring such as maximum working load, shear stress, and minimum diameter requirements, among other. The resulting mathematical formulation is a complex nonlinear and non-convex optimization model that is typically addressed in literature with trial and error methods or heuristic algorithms. To solve this problem efficiently, the SCA is proposed in this research. This optimization algorithm belongs to the family of the metaheuristic optimization techniques, it works with controlled random processes guided by sine and cosine trigonometric functions, that allows exploring and exploiting the solution space in order to find the best solution to the optimization problem. By presenting as main advantage an easy implementation at any programming language using sequential quadratic programming; eliminating the need to uses specialized and costly software. Numerical results demonstrating that the proposes SCA allows reaching lower spring volume values in comparison with literature approaches, such as genetic algorithms, particle swarm optimization methods, among others. All the numerical simulations have been implemented in the MATLAB software.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Transactions on Energy Systems and Engineering Applications621.3Mechanical analysisMachine elements designSine-cosine algorithmNonlinear optimization model;Closed coil helical springLEMBApplication of the sine-cosine algorithm to the optimal design of a closed coil helical springinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Cartagena de IndiasIngeniería EléctricaInvestigadoresG. P. Garcia, “Una teoría general de análisis en el diseño de elementos de máquinas, ”Ingeniería e Investigación, vol. 0, no. 13, p. 31–42,2010M. A. Rodriguez-Cabal, J. A. Mar ́ın, L. F. Grisales-Noreña, O. D. Montoya, and J. A. S. Del Rio, “Optimization of a drive shaft using PSOalgorithm,”WSEAS Transactions on Applied and Theoretical Mechanics,vol. 13, pp. 130–139, 2018.R. G. Budynas and J. K. Nisbett, Shigley ́s Mechanical Engineering Design. New York: McGRAW-HILL, 9 ed., 2011S. Bhaumik, R. Rangaraju, M. Parameswara, M. Venkataswamy, T. Bhaskaran, and R. Krishnan, “Fatigue failure of a hollow powertransmission shaft,”Engineering Failure Analysis, vol. 9, pp. 457–467,aug 2002M. A. Rodriguez-Cabal, L. F. Grisales-Noreña, J. G. Ardila-Marín, and O. D. Montoya-Giraldo, “Optimal design of transmission shafts:a continuous genetic algorithm approach, ”Statistics, Optimization & Information Computing, vol. 7, dec 2019.H. N. Ghafil and K. Jármai, “Dynamic differential annealed opti-mization: New metaheuristic optimization algorithm for engineering applications, ”Applied Soft Computing, vol. 93, p. 106392, aug 2020.M. Kohli and S. Arora, “Chaotic grey wolf optimization algorithm forconstrained optimization problems, ”Journal of Computational Designand Engineering, vol. 5, pp. 458–472, mar 2017.M. Taktak, K. Omheni, A. Aloui, F. Dammak, and M. Haddar, “Dynamic optimization design of a cylindrical helical spring, ”Applied Acoustics,vol. 77, pp. 178–183, mar 2014.L. Wu, L. Chen, H. Fu, Q. Jiang, X. Wu, and Y. Tang, “Carbon fibercomposite multistrand helical springs with adjustable spring constant: design and mechanism studies, ”Journal of Materials Research andTechnology, vol. 9, pp. 5067–5076, may 2020.J. Ke, Z. yu Wu, Y. sheng Liu, Z. Xiang, and X. dong Hu, “De-sign method, performance investigation and manufacturing process of composite helical springs: A review, ”Composite Structures, vol. 252, p. 112747, nov 2020.B. Thamaraikannan and V. Thirunavukkarasu, “Design Optimizationof Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator, ”Mathemati-cal Problems in Engineering, vol. 2014, pp. 1–10, 2014.L. F. Grisales-Noreña, O. D. Garzón-Rivera, J. A. Ocampo-Toro, C. A. Ramos-Paja, and M. A. Rodriguez-Cabal, “Metaheuristic optimizationmethods for optimal power flow analysis in DC distribution networks,”Transactions on Energy Systems and Engineering Applications, vol. 1,pp. 13–31, dec 2020.O. D. Montoya, A. Molina-Cabrera, H. R. Chamorro, L. Alvarado-Barrios, and E. Rivas-Trujillo, “A Hybrid Approach Based on SOCPand the Discrete Version of the SCA for Optimal Placement and SizingDGs in AC Distribution Networks,”Electronics, vol. 10, p. 26, dec 2020.S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimizationproblems, ”Knowledge-Based Systems, vol. 96, pp. 120–133, mar 2016.H. Huang, X. Feng, A. A. Heidari, Y. Xu, M. Wang, G. Liang, H. Chen,and X. Cai, “Rationalized Sine Cosine Optimization With EfficientSearching Patterns,”IEEE Access, vol. 8, pp. 61471–61490, 2020A.-F. Attia, R. A. E. Sehiemy, and H. M. Hasanien, “Optimal powerflow solution in power systems using a novel Sine-Cosine algorithm,”Int. J. Electr. Power Energy Syst., vol. 99, pp. 331–343, jul 2018.J. A. Giraldo, O. D. Montoya, L. F. Grisales-Noreña, W. Gil-González, and M. Holgu ́ın, “Optimal power flow solution in direct current gridsusing Sine-Cosine algorithm,”J. Phys. Conf. Ser., vol. 1403, p. 012009,nov 2019.A. I. Hafez, H. M. Zawbaa, E. Emary, and A. E. Hassanien, “Sine cosineoptimization algorithm for feature selection,” in2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, aug 2016.R. M. Rizk-Allah, “An improved sine–cosine algorithm based on or-thogonal parallel information for global optimization,”Soft Computing, vol. 23, pp. 7135–7161, jul 2018S. Gupta, K. Deep, H. Moayedi, L. K. Foong, and A. Assad, “Sine cosinegrey wolf optimizer to solve engineering design problems,”Engineeringwith Computers, feb 2020.M. L. Manrique, O. D. Montoya, V. M. Garrido, L. F. Grisales-Noreña, and W. Gil-González, “Sine-Cosine Algorithm for OPF Analysis in Dis-tribution Systems to Size Distributed Generators,” in Communications in Computer and Information Science, pp. 28–39, Springer International Publishing, 2019.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdfApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdfapplication/pdf256231https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/1/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf5f8ae55a197833089193a685ac9d2d2cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txtApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txtExtracted texttext/plain29081https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/4/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.txt090da7b849532344aec48ea0414290deMD54THUMBNAILApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgApplication_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgGenerated Thumbnailimage/jpeg124482https://repositorio.utb.edu.co/bitstream/20.500.12585/10677/5/Application_of_the_Sine_Cosine_Algorithm_to_the_Optimal_Design_of_a_Closed_Coil_Helical_Spring.pdf.jpgfcd71eb1a7d2d61ec86fe5911d132c12MD5520.500.12585/10677oai:repositorio.utb.edu.co:20.500.12585/106772022-04-22 00:18:29.367Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |