Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources

This paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10432
Acceso en línea:
https://hdl.handle.net/20.500.12585/10432
https://doi.org/10.15446/dyna.v88n217.93099
Palabra clave:
Minimization of greenhouse gas emissions
Renewable energy resources
Daily demand curves
Convex optimization
Diesel generators
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_643f7dbabcea92f8403e011083ee5ee1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10432
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
dc.title.alternative.es_CO.fl_str_mv Minimización exacta de las pérdidas de energía y las emisiones de CO2 en redes de distribución DC aisladas empleando fuentes fotovoltaicas
title Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
spellingShingle Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
Minimization of greenhouse gas emissions
Renewable energy resources
Daily demand curves
Convex optimization
Diesel generators
LEMB
title_short Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
title_full Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
title_fullStr Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
title_full_unstemmed Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
title_sort Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
dc.subject.keywords.es_CO.fl_str_mv Minimization of greenhouse gas emissions
Renewable energy resources
Daily demand curves
Convex optimization
Diesel generators
topic Minimization of greenhouse gas emissions
Renewable energy resources
Daily demand curves
Convex optimization
Diesel generators
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP), which is reformulated via mixed-integer convex optimization: This ensures the global optimum solving the resulting optimization model via branch & bound and interior-point methods. The main idea of including PV sources in the DC grid is to minimize the daily energy losses and greenhouse emissions produced by diesel generators in isolated areas. The GAMS package is employed to solve the MINLP model, using mixed and integer variables; also, the CVX and MOSEK solvers are used to obtain solutions from the proposed mixed-integer convex model in the MATLAB. Numerical results demonstrate important reductions in the daily energy losses and the harmful gas emissions when PV sources are optimally integrated into DC grid.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-28
dc.date.accessioned.none.fl_str_mv 2022-02-02T20:36:12Z
dc.date.available.none.fl_str_mv 2022-02-02T20:36:12Z
dc.date.submitted.none.fl_str_mv 2022-01-28
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.es_CO.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.es_CO.fl_str_mv Montoya, O.D., Gil-González, W. and Molina-Cabrera, A., Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources.. DYNA, 88(217), pp. 178-184, April - June, 2021
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10432
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15446/dyna.v88n217.93099
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D., Gil-González, W. and Molina-Cabrera, A., Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources.. DYNA, 88(217), pp. 178-184, April - June, 2021
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10432
https://doi.org/10.15446/dyna.v88n217.93099
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 7 Páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv DYNA - vol. 88 N° 217 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/1/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/4/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/5/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
7c463d473fb0c17ec133e0423d65a91b
63af781077ed2e81c78e3bd1c4099081
47be706ffcf6c6168af05103c97852e1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596110651392
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter1747fed9-7818-4c10-a283-efb3c73ebb27Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba398492022-02-02T20:36:12Z2022-02-02T20:36:12Z2021-04-282022-01-28Montoya, O.D., Gil-González, W. and Molina-Cabrera, A., Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources.. DYNA, 88(217), pp. 178-184, April - June, 2021https://hdl.handle.net/20.500.12585/10432https://doi.org/10.15446/dyna.v88n217.93099Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP), which is reformulated via mixed-integer convex optimization: This ensures the global optimum solving the resulting optimization model via branch & bound and interior-point methods. The main idea of including PV sources in the DC grid is to minimize the daily energy losses and greenhouse emissions produced by diesel generators in isolated areas. The GAMS package is employed to solve the MINLP model, using mixed and integer variables; also, the CVX and MOSEK solvers are used to obtain solutions from the proposed mixed-integer convex model in the MATLAB. Numerical results demonstrate important reductions in the daily energy losses and the harmful gas emissions when PV sources are optimally integrated into DC grid.Este paper aborda la ubicación y el tamaño óptimos de las fuentes fotovoltaicas (PV) en redes eléctricas aisladas de corriente continua (CC), considerando la carga variable en el tiempo y las curvas de generación renovable. La formulación matemática de este problema corresponde a la programación no lineal de enteros mixtos (MINLP), que es reformulada mediante optimización convexa de enteros mixtos. Esto asegura el óptimo global resolviendo el modelo de optimización resultante a través de métodos de punto interior y ramificación. La idea principal de incluir fuentes fotovoltaicas en la red de CC es minimizar las pérdidas diarias de energía y las emisiones de efecto invernadero producidas por los generadores diésel en áreas aisladas. El paquete GAMS se emplea para resolver el modelo MINLP, utilizando variables mixtas y enteras. Además, los solucionadores CVX y MOSEK se utilizan para obtener soluciones del modelo convexo de enteros mixtos propuesto en MATLAB. Los resultados numéricos demuestran importantes reducciones en las pérdidas diarias de energía y las emisiones de gases nocivos cuando las fuentes fotovoltaicas se integran de manera óptima en la red de CC.7 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2DYNA - vol. 88 N° 217 (2021)Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sourcesMinimización exacta de las pérdidas de energía y las emisiones de CO2 en redes de distribución DC aisladas empleando fuentes fotovoltaicasinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Minimization of greenhouse gas emissionsRenewable energy resourcesDaily demand curvesConvex optimizationDiesel generatorsLEMBCartagena de IndiasArunkumar, G., Elangovan, D., Sanjeevikumar, P., Nielsen, J.B.H., Leonowicz, Z. and Joseph, P.K., DC grid for domestic electrification. Energies, 12(11), pp. 1-17, 2019. DOI: 10.3390/en12112157Girbau-Llistuella, F., Díaz-González, F., Sumper, A., Gallart-Fernández, R. and Heredero-Peris, D., Smart grid architecture for rural distribution networks: application to a Spanish Pilot Network. Energies, 11(4), pp. 1-35, 2018. DOI: 10.3390/en11040844Lavorato, M., Franco, J.F., Rider, M.J. and Romero, R., Imposing radiality constraints in distribution system optimization problems. IEEE Transactions on Power Systems, 27(1), pp. 172-180, 2012. DOI: 10.1109/TPWRS.2011.2161349Lotfi, H. and Khodaei, A., AC versus DC microgrid planning. IEEE Transactions on Smart Grid, 8(1), pp. 296-304, 2017. DOI: 10.1109/TSG.2015.2457910Justo, J.J., Mwasilu, F., Lee, J. and Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renewable and Sustainable Energy Reviews, 24(8), pp. 387-405, 2013. DOI: 10.1016/j.rser.2013.03.067Sarker, M.J., Asare-Bediako, B., Slootweg, J.G., Kling, W.L. and Alipuria, B., DC micro-grid with distributed generation for rural electrification, in: 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1-6. DOI: 10.1109/UPEC.2012.6398580Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research, 151(10), pp. 149-153, 2017. DOI: 10.1016/j.epsr.2017.05.031Garces, A., On the convergence of Newton Method in power flow studies for DC microgrids. IEEE Transactions on Power Systems, 33(9), pp. 5770-5777, 2018. DOI: 10.1109/TPWRS.2018.2820430Li, J., Liu, F., Wang, Z., Low, S.H. and Mei, S., Optimal power flow in Stand-Alone DC microgrid., IEEE Transactions on Power Systems, 33(9), pp. 5496-5506, 9 2018. DOI: 10.1109/TPWRS.2018.2801280Gholizadeh-Roshanagh, R., Najafi-Ravadanegh, S. and Hosseinian, S.H., On optimal cost planning of low voltage direct current power distribution Networks. Electric Power Components and Systems, 46(9), pp. 1019-1028, 2018. DOI: 10.1080/15325008.2018.1445143Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A., Hernandez-Escobedo, Q. and Perea-Moreno, A.J., Optimal location and sizing of distributed generators in DC Networks using a hybrid method based on parallel PBIL and PSO. Electronics, 9(11), pp. 1-27, 2020. DOI: 10.3390/electronics9111808Gil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Cruz-Peragón, F. and Alcalá, G., Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization. Energies, 13(7), pp. 1-15, 2020. DOI: 10.3390/en13071703Gil-González, W., Montoya, O.D., Holguín, E., Garces, A. and Grisales-Noreña, L.F., Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model. Journal of Energy Storage, 21(2), pp. 1-8, 2019. DOI: 10.1016/j.est.2018.10.025Grisales-Noreña, L.F., Montoya, O.D. and Ramos-Paja, C.A., An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage, 29(6), pp. 101488, 2020. DOI: 10.1016/j.est.2020.101488Altun, T., Madani, R., Yadav, A.P., Nasir, A. and Davoudi, A., Optimal reconfiguration of DC Networks. IEEE Transactions on Power Systems, 35(11), pp. 4272-4284, 2020. DOI: 10.1109/TPWRS.2020.2994962Grisales-Noreña, L.F., Garzon-Rivera, O.D., Montoya, O.D. and Ramos-Paja, C.A., Metaheuristic optimization methods for optimal location and sizing DGs in DC Networks, in communications in computer and information science, Springer International Publishing, pp. 214-225, 2019. DOI: 10.1007/978-3-030-31019-6_19Molina-Martin, F., Montoya, O.D., Grisales-Noreña, L.F. and Hernández, J.C., A Mixed-Integer conic formulation for optimal placement and dimensioning of DGs in DC distribution Networks. Electronics, 10(2), pp. 1-15, 2021. DOI: 10.3390/electronics10020176Gil-González, W., Molina-Cabrera, A., Montoya, O.D. and Grisales-Noreña, L.F., An MI-SDP model for optimal location and sizing of distributed generators in DC grids that guarantees the global optimum. Applied Sciences, 10(21), pp. 1-19, 2020. DOI: 10.3390/app10217681Montoya, O.D., Gil-González, W. and Rivas-Trujillo, E., Optimal location-reallocation of battery energy storage systems in DC microgrids. Energies, 13(9), pp. 1-20, 2020. DOI: 10.3390/en13092289Simpson-Porco, J.W., Dörfler, F. and Bullo, F., On resistive Networks of constant-power devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), pp. 811-815, 2015. DOI: 10.1109/TCSII.2015.2433537Montoya, O.D., Garrido, V.M., Gil-González, W. and Grisales-Noreña, L.F., Power flow analysis in DC grids: two alternative numerical methods. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(11), pp. 1865-1869, 2019. DOI: 10.1109/TCSII.2019.2891640Montoya, O.D., Gil-Gonzalez, W. and Garces, A., Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electric Power Systems Research, 175(10), pp. 105887, 2019. DOI: 10.1016/j.epsr.2019.105887Garcés, A. and Montoya, O.D., A potential function for the power flow in DC microgrids: an analysis of the uniqueness and existence of the solution and convergence of the algorithms. Journal of Control, Automation and Electrical Systems, 30(6), pp. 794-801, 2019. DOI: 10.1007/s40313-019-00489-4Montoya, O.D., Gil-González, W. and Orozco-Henao, C., On the convergence of the power flow methods for DC networks with mesh and radial structures. Electric Power Systems Research, 191(2), pp. 106881, 2021. DOI: 10.1016/j.epsr.2020.106881Velasquez, O.S., Montoya-Giraldo, O.D., Garrido Arevalo, V.M. and Grisales Noreña, L.F., Optimal power flow in Direct-Current power grids via black hole optimization. Advances in Electrical and Electronic Engineering, 17(1), pp. 24-32, 2019. DOI: 10.15598/aeee.v17i1.3069Montoya, O.D., Gil-González, W. and Grisales-Noreña, L.F., Vortex search algorithm for optimal power flow analysis in DC resistive Networks with CPLs. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(8), pp. 1439-1443, 2020. DOI: 10.1109/TCSII.2019.2938530Garzon-Rivera, O.D., Ocampo, J.A., Grisales-Noreña, L.F., Montoya, O.D. and Rojas-Montano, J.J., Optimal power flow in Direct Current Networks using the antlion optimizer. Statistics. Optimization & Information Computing, 8(10), pp. 846-857, 2020. DOI: 10.19139/soic-2310-5070-1022Arteaga, J.A., Montoya, O.D. and Grisales-Noreña, L.F., Solution of the optimal power flow problem in direct current grids applying the hurricane optimization algorithm. Journal of Physics: Conference Series, 1448(1), art. 012015, 2020. DOI: 10.1088/1742-6596/1448/1/012015Khanna, R., Various control methods for DC-DC buck converter, in 2012 IEEE Fifth Power India Conference, 2012, pp. 1-4. DOI: 10.1109/PowerI.2012.6479548Liu, Z., Su, M., Sun, Y., Han, H., Hou, X. and Guerrero, J.M., Stability analysis of DC microgrids with constant power load under distributed control methods. Automatica, 90(4), pp. 62-72, 2018. DOI: 10.1016/j.automatica.2017.12.051Ramírez-Gómez, C.A., Saavedra-Montes, A.J. and Ramos-Paja, C.A., Diseño de un Convertidor CD-CD y su control para un sistema de generación eólico conectado a una carga aislada. TecnoLógicas, pp. 95, 2013. DOI: 10.22430/22565337.336Serna-Garcés, S.I., Gonzalez-Montoya, D. and Ramos-Paja, C.A., Sliding-mode control of a Charger/Discharger DC/DC converter for DC-Bus regulation in renewable power systems, Energies, 9(4), pp. 1-27, 2016. DOI: 10.3390/en9040245Shen, Y., Qin, Z. and Wang, H., Modeling and control of DC-DC converters, in: Control of Power Electronic Converters and Systems, Elsevier, 2018, pp. 69-92. DOI: 10.1016/B978-0-12-805245-7.00003-2Benson, H.Y. and Sağlam, Ü., Mixed-integer second-order cone programming: a survey, in: Theory Driven by Influential Applications, INFORMS, 2013, pp. 13-36. DOI: 10.1287/educ.2013.0115Montoya, O.D., Grisales-Noreña, L F., Gil-González, W., Alcalá, G. and Hernandez-Escobedo, Q., Optimal location and sizing of PV sources in DC Networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), pp. 1-14, 2020. DOI: 10.3390/sym12020322Farivar, M. and Low, S.H., Branch flow model: relaxations and convexification-Part I. IEEE Transactions on Power Systems, 28(3), pp. 2554-2564, 2013. DOI: 10.1109/TPWRS.2013.2255317Kayacik, S.E. and Kocuk, B., An MISOCP-based solution approach to the reactive optimal power flow problem. IEEE Transactions on Power Systems, 36(1), pp. 529-532, 2021Farivar, M. and Low, S.H., Branch flow model: relaxations and convexification-Part II. IEEE Transactions on Power Systems, 28(3), pp. 2565-2572, 2013. DOI: 10.1109/TPWRS.2020.3036235Montoya, O.D., Serra, F.M and De Angelo, C. H., On the efficiency in electrical Networks with AC and DC operation technologies: a comparative study at the distribution stage, Electronics, 9(9), pp. 1-23, 2020. DOI: 10.3390/electronics9091352http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL93099-Texto del artículo-529244-1-10-20210520.pdf93099-Texto del artículo-529244-1-10-20210520.pdfapplication/pdf612935https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/1/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf7c463d473fb0c17ec133e0423d65a91bMD51TEXT93099-Texto del artículo-529244-1-10-20210520.pdf.txt93099-Texto del artículo-529244-1-10-20210520.pdf.txtExtracted texttext/plain43260https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/4/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf.txt63af781077ed2e81c78e3bd1c4099081MD54THUMBNAIL93099-Texto del artículo-529244-1-10-20210520.pdf.jpg93099-Texto del artículo-529244-1-10-20210520.pdf.jpgGenerated Thumbnailimage/jpeg88400https://repositorio.utb.edu.co/bitstream/20.500.12585/10432/5/93099-Texto%20del%20art%c3%adculo-529244-1-10-20210520.pdf.jpg47be706ffcf6c6168af05103c97852e1MD5520.500.12585/10432oai:repositorio.utb.edu.co:20.500.12585/104322022-02-03 02:14:42.132Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=