Generating density maps for convolutional neural network-based cell counting in specular microscopy images

Accurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological c...

Full description

Autores:
Sierra, J S
Pineda, J
Viteri, E
Tello, Alejandro
Millán, M S
Galvis, V
Romero, L A
Marrugo Hernández, Andrés Guillermo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9390
Acceso en línea:
https://hdl.handle.net/20.500.12585/9390
https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta
Palabra clave:
Microscopios especulares
Células en córneas
Densidad celular automatizada
Software
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UTB2_642868dab1d536a84caffcc53bee1f31
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9390
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Generating density maps for convolutional neural network-based cell counting in specular microscopy images
title Generating density maps for convolutional neural network-based cell counting in specular microscopy images
spellingShingle Generating density maps for convolutional neural network-based cell counting in specular microscopy images
Microscopios especulares
Células en córneas
Densidad celular automatizada
Software
title_short Generating density maps for convolutional neural network-based cell counting in specular microscopy images
title_full Generating density maps for convolutional neural network-based cell counting in specular microscopy images
title_fullStr Generating density maps for convolutional neural network-based cell counting in specular microscopy images
title_full_unstemmed Generating density maps for convolutional neural network-based cell counting in specular microscopy images
title_sort Generating density maps for convolutional neural network-based cell counting in specular microscopy images
dc.creator.fl_str_mv Sierra, J S
Pineda, J
Viteri, E
Tello, Alejandro
Millán, M S
Galvis, V
Romero, L A
Marrugo Hernández, Andrés Guillermo
dc.contributor.author.none.fl_str_mv Sierra, J S
Pineda, J
Viteri, E
Tello, Alejandro
Millán, M S
Galvis, V
Romero, L A
Marrugo Hernández, Andrés Guillermo
dc.subject.keywords.spa.fl_str_mv Microscopios especulares
Células en córneas
Densidad celular automatizada
Software
topic Microscopios especulares
Células en córneas
Densidad celular automatizada
Software
description Accurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-22T15:10:18Z
dc.date.available.none.fl_str_mv 2020-09-22T15:10:18Z
dc.date.issued.none.fl_str_mv 2020
dc.date.submitted.none.fl_str_mv 2020-09-18
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Otro
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9390
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1547/1/012019
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019
10.1088/1742-6596/1547/1/012019
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9390
https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series 1547 (2020) 012019
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/1/35.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/5/35.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/6/35.pdf.jpg
bitstream.checksum.fl_str_mv e00c6c8d0f01721a3d1f06b20925fc26
24013099e9e6abb1575dc6ce0855efd5
e20ad307a1c5f3f25af9304a7a7c86b6
3092d9ac97abd37432089e6280d7b7e4
c16ee1996f27f84243f4262b79bfccbe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021573814779904
spelling Sierra, J S30fb3377-add1-41b4-92b5-32bedc512c91Pineda, J3d7e8198-9c35-4a92-99e8-1bec054937fbViteri, E498db34c-8870-4ab1-8ec0-cd509bf9aab0Tello, Alejandro21ce816c-6dac-4a1a-b027-d22821f3e80eMillán, M S53224030-6007-4c2c-a5db-fac006240d99Galvis, V83305944-8422-4c8f-9ecf-c10aec2bd0a8Romero, L A832b1eda-c291-4499-81c2-b46a46b0bd27Marrugo Hernández, Andrés Guillermoc8c00abe-7817-4172-bc7e-f4758f7b12cb2020-09-22T15:10:18Z2020-09-22T15:10:18Z20202020-09-18Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019https://hdl.handle.net/20.500.12585/9390https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta10.1088/1742-6596/1547/1/012019Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAccurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images.7 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series 1547 (2020) 012019Generating density maps for convolutional neural network-based cell counting in specular microscopy imagesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionOtrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Microscopios especularesCélulas en córneasDensidad celular automatizadaSoftwareCartagena de IndiasInvestigadoresRuggeri A, Grisan E and Jaroszewski J 2005 British Journal of Ophthalmology 89(3) 306Giasson C J, Graham A, Blouin J F, Solomon L, Gresset J, Melillo M and Polse K A 2005 Eye & Contact Lens 31(4) 158Maruoka S, Nakakura S, Matsuo N, Yoshitomi K, Katakami C, Tabuchi H, Chikama T and Kiuchi Y 2017 International Ophthalmology 35 1Russell S J and Norvig P 2016 Artificial Intelligence: A Modern Approach (Malaysia: Pearson Education Limited)Xie W, Noble J A and Zisserman A 2018 Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6(3) 283Ruggeri A, Scarpa F, De Luca M, Meltendorf C and Schroeter J 2010 British Journal of Ophthalmology 94(5) 643Al-Fahdawi S, Qahwaji R, Al-Waisy A S, Ipson S, Ferdousi M, Malik R A and Brahma A 2018 Computer Methods and Programs in Biomedicine 160 11Scarpa F and Ruggeri A 2016 Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando: IEEE) pp 1296–1299Scarpa F and Ruggeri A 2016 Cornea 35(9) 1222Piorkowski A, Nurzynska K, Boldak C, Reska D and Gronkowska-Serafin J 2015 Journal of Medical Informatics & Technologies 24 155Piorkowski A, Nurzynska K, Gronkowska-Serafin J, Selig B, Boldak C and Reska D 2017 Computerized Medical Imaging and Graphics 55 13Daniel M C, Atzrodt L, Bucher F, Wacker K, B¨ohringer S, Reinhard T and B¨ohringer D 2019 Scientific Reports (1) 4752Weidi X, Noble J A and Zisserman A 2015 Microscopy cell counting with fully convolutional regression networks 1st Deep Learning Workshop, Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Munich: The Medical Image Computing and Computer Assisted Intervention Society)Lempitsky V and Zisserman A 2010 Learning to count objects in images Advances in Neural Information Processing Systems 23th International Conference on Neural Information Processing Systems (NIPS) (Canada: Neural Information Processing Systems Foundation Inc.) pp 1324–1332Kang D, Ma Z and Chan A B 2018 IEEE Transactions on Circuits and Systems for Video Technology 29(5) 1408Chollet F et al. 2015 Keras: Machine Learning in Python (San Francisco: GitHub Inc.)http://purl.org/coar/resource_type/c_c94fORIGINAL35.pdf35.pdfPonenciaapplication/pdf1935462https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/1/35.pdfe00c6c8d0f01721a3d1f06b20925fc26MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT35.pdf.txt35.pdf.txtExtracted texttext/plain15442https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/5/35.pdf.txt3092d9ac97abd37432089e6280d7b7e4MD55THUMBNAIL35.pdf.jpg35.pdf.jpgGenerated Thumbnailimage/jpeg34471https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/6/35.pdf.jpgc16ee1996f27f84243f4262b79bfccbeMD5620.500.12585/9390oai:repositorio.utb.edu.co:20.500.12585/93902023-05-26 16:23:03.817Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=