Generating density maps for convolutional neural network-based cell counting in specular microscopy images
Accurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological c...
- Autores:
-
Sierra, J S
Pineda, J
Viteri, E
Tello, Alejandro
Millán, M S
Galvis, V
Romero, L A
Marrugo Hernández, Andrés Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9390
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9390
https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta
- Palabra clave:
- Microscopios especulares
Células en córneas
Densidad celular automatizada
Software
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UTB2_642868dab1d536a84caffcc53bee1f31 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9390 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
title |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
spellingShingle |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images Microscopios especulares Células en córneas Densidad celular automatizada Software |
title_short |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
title_full |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
title_fullStr |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
title_full_unstemmed |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
title_sort |
Generating density maps for convolutional neural network-based cell counting in specular microscopy images |
dc.creator.fl_str_mv |
Sierra, J S Pineda, J Viteri, E Tello, Alejandro Millán, M S Galvis, V Romero, L A Marrugo Hernández, Andrés Guillermo |
dc.contributor.author.none.fl_str_mv |
Sierra, J S Pineda, J Viteri, E Tello, Alejandro Millán, M S Galvis, V Romero, L A Marrugo Hernández, Andrés Guillermo |
dc.subject.keywords.spa.fl_str_mv |
Microscopios especulares Células en córneas Densidad celular automatizada Software |
topic |
Microscopios especulares Células en córneas Densidad celular automatizada Software |
description |
Accurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-22T15:10:18Z |
dc.date.available.none.fl_str_mv |
2020-09-22T15:10:18Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.submitted.none.fl_str_mv |
2020-09-18 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Otro |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9390 |
dc.identifier.url.none.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1547/1/012019 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019 10.1088/1742-6596/1547/1/012019 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9390 https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
7 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series 1547 (2020) 012019 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/1/35.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/5/35.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/6/35.pdf.jpg |
bitstream.checksum.fl_str_mv |
e00c6c8d0f01721a3d1f06b20925fc26 24013099e9e6abb1575dc6ce0855efd5 e20ad307a1c5f3f25af9304a7a7c86b6 3092d9ac97abd37432089e6280d7b7e4 c16ee1996f27f84243f4262b79bfccbe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021573814779904 |
spelling |
Sierra, J S30fb3377-add1-41b4-92b5-32bedc512c91Pineda, J3d7e8198-9c35-4a92-99e8-1bec054937fbViteri, E498db34c-8870-4ab1-8ec0-cd509bf9aab0Tello, Alejandro21ce816c-6dac-4a1a-b027-d22821f3e80eMillán, M S53224030-6007-4c2c-a5db-fac006240d99Galvis, V83305944-8422-4c8f-9ecf-c10aec2bd0a8Romero, L A832b1eda-c291-4499-81c2-b46a46b0bd27Marrugo Hernández, Andrés Guillermoc8c00abe-7817-4172-bc7e-f4758f7b12cb2020-09-22T15:10:18Z2020-09-22T15:10:18Z20202020-09-18Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019https://hdl.handle.net/20.500.12585/9390https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta10.1088/1742-6596/1547/1/012019Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAccurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images.7 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series 1547 (2020) 012019Generating density maps for convolutional neural network-based cell counting in specular microscopy imagesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionOtrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Microscopios especularesCélulas en córneasDensidad celular automatizadaSoftwareCartagena de IndiasInvestigadoresRuggeri A, Grisan E and Jaroszewski J 2005 British Journal of Ophthalmology 89(3) 306Giasson C J, Graham A, Blouin J F, Solomon L, Gresset J, Melillo M and Polse K A 2005 Eye & Contact Lens 31(4) 158Maruoka S, Nakakura S, Matsuo N, Yoshitomi K, Katakami C, Tabuchi H, Chikama T and Kiuchi Y 2017 International Ophthalmology 35 1Russell S J and Norvig P 2016 Artificial Intelligence: A Modern Approach (Malaysia: Pearson Education Limited)Xie W, Noble J A and Zisserman A 2018 Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6(3) 283Ruggeri A, Scarpa F, De Luca M, Meltendorf C and Schroeter J 2010 British Journal of Ophthalmology 94(5) 643Al-Fahdawi S, Qahwaji R, Al-Waisy A S, Ipson S, Ferdousi M, Malik R A and Brahma A 2018 Computer Methods and Programs in Biomedicine 160 11Scarpa F and Ruggeri A 2016 Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando: IEEE) pp 1296–1299Scarpa F and Ruggeri A 2016 Cornea 35(9) 1222Piorkowski A, Nurzynska K, Boldak C, Reska D and Gronkowska-Serafin J 2015 Journal of Medical Informatics & Technologies 24 155Piorkowski A, Nurzynska K, Gronkowska-Serafin J, Selig B, Boldak C and Reska D 2017 Computerized Medical Imaging and Graphics 55 13Daniel M C, Atzrodt L, Bucher F, Wacker K, B¨ohringer S, Reinhard T and B¨ohringer D 2019 Scientific Reports (1) 4752Weidi X, Noble J A and Zisserman A 2015 Microscopy cell counting with fully convolutional regression networks 1st Deep Learning Workshop, Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Munich: The Medical Image Computing and Computer Assisted Intervention Society)Lempitsky V and Zisserman A 2010 Learning to count objects in images Advances in Neural Information Processing Systems 23th International Conference on Neural Information Processing Systems (NIPS) (Canada: Neural Information Processing Systems Foundation Inc.) pp 1324–1332Kang D, Ma Z and Chan A B 2018 IEEE Transactions on Circuits and Systems for Video Technology 29(5) 1408Chollet F et al. 2015 Keras: Machine Learning in Python (San Francisco: GitHub Inc.)http://purl.org/coar/resource_type/c_c94fORIGINAL35.pdf35.pdfPonenciaapplication/pdf1935462https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/1/35.pdfe00c6c8d0f01721a3d1f06b20925fc26MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT35.pdf.txt35.pdf.txtExtracted texttext/plain15442https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/5/35.pdf.txt3092d9ac97abd37432089e6280d7b7e4MD55THUMBNAIL35.pdf.jpg35.pdf.jpgGenerated Thumbnailimage/jpeg34471https://repositorio.utb.edu.co/bitstream/20.500.12585/9390/6/35.pdf.jpgc16ee1996f27f84243f4262b79bfccbeMD5620.500.12585/9390oai:repositorio.utb.edu.co:20.500.12585/93902023-05-26 16:23:03.817Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |