Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs

This paper addresses the voltage regulation problem on isolated three-phase microgrids via passivity-based control (PBC) with a proportional regulator under the abc reference frame. This reference frame is employed to design the proportional controllers to support voltage and frequency profiles on t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9151
Acceso en línea:
https://hdl.handle.net/20.500.12585/9151
Palabra clave:
Battery energy storage systems
Isolated three-phase microgrids
Passivity-based control theory
Small-distributed energy resources
Voltage and frequency regulation
Battery storage
Energy resources
Power converters
Voltage regulators
Battery energy storage systems
Distributed energy resources
Frequency regulations
Micro grid
Passivity based control
Controllers
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_640408c9c84c6af345f359a43d86b53d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9151
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
title Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
spellingShingle Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
Battery energy storage systems
Isolated three-phase microgrids
Passivity-based control theory
Small-distributed energy resources
Voltage and frequency regulation
Battery storage
Energy resources
Power converters
Voltage regulators
Battery energy storage systems
Distributed energy resources
Frequency regulations
Micro grid
Passivity based control
Controllers
title_short Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
title_full Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
title_fullStr Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
title_full_unstemmed Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
title_sort Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs
dc.subject.keywords.none.fl_str_mv Battery energy storage systems
Isolated three-phase microgrids
Passivity-based control theory
Small-distributed energy resources
Voltage and frequency regulation
Battery storage
Energy resources
Power converters
Voltage regulators
Battery energy storage systems
Distributed energy resources
Frequency regulations
Micro grid
Passivity based control
Controllers
topic Battery energy storage systems
Isolated three-phase microgrids
Passivity-based control theory
Small-distributed energy resources
Voltage and frequency regulation
Battery storage
Energy resources
Power converters
Voltage regulators
Battery energy storage systems
Distributed energy resources
Frequency regulations
Micro grid
Passivity based control
Controllers
description This paper addresses the voltage regulation problem on isolated three-phase microgrids via passivity-based control (PBC) with a proportional regulator under the abc reference frame. This reference frame is employed to design the proportional controllers to support voltage and frequency profiles on time-varying loads through a combination of small distributed energy resources and battery energy storage systems. The proposed approach avoids using frequency measurements and reduces the complexity of the control problem. PBC theory exploits natural port-Hamiltonian formulations of the power electronic converters to design controllers, guaranteeing stability for closed-loop operation. Two passivity-based proportional controllers are proposed and compared with conventional proportional actions reported in specialized literature. Simulation results show the effectiveness and robustness of the proposed approach to fulfill the control tasks. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:04Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:04Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Green Technologies Conference; Vol. 2019-April
dc.identifier.isbn.none.fl_str_mv 9781728114576
dc.identifier.issn.none.fl_str_mv 21665478
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9151
dc.identifier.doi.none.fl_str_mv 10.1109/GreenTech.2019.8767133
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210212368
56919564100
57208126635
57191493648
36449223500
identifier_str_mv IEEE Green Technologies Conference; Vol. 2019-April
9781728114576
21665478
10.1109/GreenTech.2019.8767133
Universidad Tecnológica de Bolívar
Repositorio UTB
57210212368
56919564100
57208126635
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/9151
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 3 April 2019 through 6 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069893729&doi=10.1109%2fGreenTech.2019.8767133&partnerID=40&md5=fa934129eb234808f6a6e6f15cb095dd
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2019 IEEE Green Technologies Conference, GreenTech 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9151/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021580994379776
spelling 2020-03-26T16:33:04Z2020-03-26T16:33:04Z2019IEEE Green Technologies Conference; Vol. 2019-April978172811457621665478https://hdl.handle.net/20.500.12585/915110.1109/GreenTech.2019.8767133Universidad Tecnológica de BolívarRepositorio UTB5721021236856919564100572081266355719149364836449223500This paper addresses the voltage regulation problem on isolated three-phase microgrids via passivity-based control (PBC) with a proportional regulator under the abc reference frame. This reference frame is employed to design the proportional controllers to support voltage and frequency profiles on time-varying loads through a combination of small distributed energy resources and battery energy storage systems. The proposed approach avoids using frequency measurements and reduces the complexity of the control problem. PBC theory exploits natural port-Hamiltonian formulations of the power electronic converters to design controllers, guaranteeing stability for closed-loop operation. Two passivity-based proportional controllers are proposed and compared with conventional proportional actions reported in specialized literature. Simulation results show the effectiveness and robustness of the proposed approach to fulfill the control tasks. © 2019 IEEE.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069893729&doi=10.1109%2fGreenTech.2019.8767133&partnerID=40&md5=fa934129eb234808f6a6e6f15cb095dd2019 IEEE Green Technologies Conference, GreenTech 2019Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBattery energy storage systemsIsolated three-phase microgridsPassivity-based control theorySmall-distributed energy resourcesVoltage and frequency regulationBattery storageEnergy resourcesPower convertersVoltage regulatorsBattery energy storage systemsDistributed energy resourcesFrequency regulationsMicro gridPassivity based controlControllers3 April 2019 through 6 April 2019Amin W.T.Montoya O.D.Garrido Arévalo, Víctor ManuelGil-González W.Garces A.Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Chen, M., Xiao, X., Hierarchical frequency control strategy of hybrid droop/VSG-based islanded microgrids (2018) Electr. Power Syst. Res., 155, pp. 131-143Silva, J.F., Pinto, S.F., Linear and nonlinear control of switching power converters (2018) Power Electronics Handbook, pp. 1141-1220. , (Fourth Edition), fourth edition ed., M. H. Rashid, Ed. Butterworth-HeinemannRokrok, E., Shafie-Khah, M., Catalo, J.P., Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation (2018) Renew. Sustain. Energy Rev., 82, pp. 3225-3235Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans Power Syst, 31 (5), pp. 3369-3380. , SeptMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Moradi, M.H., Eskandari, M., Hosseinian, S.M., Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes (2016) Int. J. Electr. Power Energy Syst., 78, pp. 390-400Andishgar, M.H., Gholipour, E., Hooshmand, R.A., An overview of control approaches of inverter-based microgrids in islanding mode of operation (2017) Renew. Sustain. Energy Rev., 80, pp. 1043-1060Fattahi, J., Schriemer, H., Bacque, B., Orr, R., Hinzer, K., Haysom, J.E., High stability adaptive microgrid control method using fuzzy logic (2016) Sustainable Cities and Society, 25, pp. 57-64Vigneysh, T., Kumarappan, N., Grid interconnection of renewable energy sources using multifunctional grid-interactive converters: A fuzzy logic based approach (2017) Electr. Power Syst. Res., 151, pp. 359-368Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Hu, J., Xu, Y., Cheng, K.W., Guerrero, J.M., A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions (2018) Appl. Energy, 221, pp. 195-203Ghanbarian, M.M., Nayeripour, M., Rajaei, A., Mansouri, M.M., Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency (2016) ISA Trans., 61, pp. 179-187Pilloni, A., Pisano, A., Usai, E., Voltage restoration of islanded microgrids via cooperative second-order sliding mode control (2017) IFACPapersOnLine, 50 (1), pp. 9637-9642. , 20th IFAC World CongressPerko, L., (2013) Differential Equations and Dynamical Systems, Ser. Texts in Applied Mathematics, , Springer New YorkKhalil, H., (2013) Nonlinear Systems, Ser. Always Learning, , Pearson Education, LimitedCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Montoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory (2019) IEEE Trans. Circuits Syst. II Express Briefshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9151/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9151oai:repositorio.utb.edu.co:20.500.12585/91512023-05-26 10:09:03.726Repositorio Institucional UTBrepositorioutb@utb.edu.co