Pseudo asymptotic solutions of fractional order semilinear equations
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of peri...
- Autores:
-
Alvarez-Pardo, Edgardo
Lizama, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12196
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12196
- Palabra clave:
- Asymptotic solutions
Generalized semigroup theory;
Pseudo
Sectorial operators
Two-term time fractional derivative
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_636afaa83c05f3730559ceaa9fa891df |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12196 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Pseudo asymptotic solutions of fractional order semilinear equations |
title |
Pseudo asymptotic solutions of fractional order semilinear equations |
spellingShingle |
Pseudo asymptotic solutions of fractional order semilinear equations Asymptotic solutions Generalized semigroup theory; Pseudo Sectorial operators Two-term time fractional derivative |
title_short |
Pseudo asymptotic solutions of fractional order semilinear equations |
title_full |
Pseudo asymptotic solutions of fractional order semilinear equations |
title_fullStr |
Pseudo asymptotic solutions of fractional order semilinear equations |
title_full_unstemmed |
Pseudo asymptotic solutions of fractional order semilinear equations |
title_sort |
Pseudo asymptotic solutions of fractional order semilinear equations |
dc.creator.fl_str_mv |
Alvarez-Pardo, Edgardo Lizama, Carlos |
dc.contributor.author.none.fl_str_mv |
Alvarez-Pardo, Edgardo Lizama, Carlos |
dc.subject.keywords.es_CO.fl_str_mv |
Asymptotic solutions Generalized semigroup theory; Pseudo Sectorial operators Two-term time fractional derivative |
topic |
Asymptotic solutions Generalized semigroup theory; Pseudo Sectorial operators Two-term time fractional derivative |
description |
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2023-07-19T21:19:13Z |
dc.date.available.none.fl_str_mv |
2023-07-19T21:19:13Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.es_CO.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.es_CO.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.es_CO.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.es_CO.fl_str_mv |
Edgardo, A.-P. , Lizama, C. Pseudo asymptotic solutions of fractional order semilinear equations (2013) Banach Journal of Mathematical Analysis, 7 (2), pp. 42-52. DOI: 10.15352/bjma/1363784222 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12196 |
dc.identifier.doi.none.fl_str_mv |
10.15352/bjma/1363784222 |
dc.identifier.instname.es_CO.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.es_CO.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Edgardo, A.-P. , Lizama, C. Pseudo asymptotic solutions of fractional order semilinear equations (2013) Banach Journal of Mathematical Analysis, 7 (2), pp. 42-52. DOI: 10.15352/bjma/1363784222 10.15352/bjma/1363784222 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12196 |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.es_CO.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.medium.none.fl_str_mv |
Pdf |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.place.es_CO.fl_str_mv |
Cartagena de Indias |
dc.source.es_CO.fl_str_mv |
Banach Journal of Mathematical Analysis - vol. 7 No. 2 (2013) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/1/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/4/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/5/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.jpg |
bitstream.checksum.fl_str_mv |
8d573a1fede7ee1b7637a3a0d05db77c 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 f13ab5a1a0f3b5a7443fd346e00ddba0 a5f6906c463fdc1238086704e0393228 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021801750036480 |
spelling |
Alvarez-Pardo, Edgardo34e3befe-54cf-4572-8597-9a681aeebb61Lizama, Carlos077c10a1-e22c-4c78-afec-b94f2709dc2d2023-07-19T21:19:13Z2023-07-19T21:19:13Z20132023-07Edgardo, A.-P. , Lizama, C. Pseudo asymptotic solutions of fractional order semilinear equations (2013) Banach Journal of Mathematical Analysis, 7 (2), pp. 42-52. DOI: 10.15352/bjma/1363784222https://hdl.handle.net/20.500.12585/1219610.15352/bjma/1363784222Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarUsing a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique.11 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Banach Journal of Mathematical Analysis - vol. 7 No. 2 (2013)Pseudo asymptotic solutions of fractional order semilinear equationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Asymptotic solutionsGeneralized semigroup theory;PseudoSectorial operatorsTwo-term time fractional derivativeCartagena de IndiasAraya, D., Lizama, C. Almost automorphic mild solutions to fractional differential equations (2008) Nonlinear Analysis, Theory, Methods and Applications, 69 (11), pp. 3692-3705. Cited 173 times. doi: 10.1016/j.na.2007.10.004Arendt, W., Batty, C., Hieber, M., Neubrander, F. Vector-valued Laplace Transforms and Cauchy Problems (2001) Monographs in Mathematics, 96. Cited 350 times. Birkhäuser, BaselBazhlekova, E. (2001) Fractional Evolution Equations in Banach Spaces. Cited 553 times. Ph.D. Thesis, Eindhoven University of TechnologyBochner, S. Continuous mappings of almost automorphic and almost periodic functions (1964) Proc. Nat. Acad. Sci. USA, 52, pp. 907-910. Cited 195 times.Bochner, S. Uniform convergence of monotone sequences of functions (1961) Proc. Nat. Acad. Sci. USA, 47, pp. 582-585. Cited 71 times.Bochner, S. A new approach in almost-periodicity (1962) Proc. Nat. Acad. Sci. USA, 48, pp. 2039-2043. Cited 280 times.Bochner, S., Von Neumann, J. On compact solutions of operational-differential equations I (1935) Ann. Math, 36, pp. 255-290. Cited 42 times.De Andrade, B., Cuevas, C., Henr´iquez, E. Almost automorphic solutions of hyperbolic evolution equations (2012) Banach Journal of Mathematical Analysis, 6 (1), pp. 90-100. Cited 5 times. doi: 10.15352/bjma/1337014667Goreno, R., Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order CIMS Lecture Notes. Cited 160 times. http://arxiv.org/0805.3823Heymans, N., Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives (2006) Rheologica Acta, 45 (5), pp. 765-771. Cited 518 times. doi: 10.1007/s00397-005-0043-5Hilfer, R. (2000) Applications of Fractional Calculus in Physics. Cited 6131 times. World Scientifc Publ. Co., SingaporeKeyantuo, V., Lizama, C., Warma, M. Asymptotic Behavior of Fractional Order Semilinear Evolution Equations. Cited 2 times.Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006) Theory and Applications of Fractional Differential Equations. Cited 12243 times. Elsevier, AmsterdamLiang, J., Zhang, J., Xiao, T.-J. Composition of pseudo almost automorphic and asymptotically almost automorphic functions (2008) Journal of Mathematical Analysis and Applications, 340 (2), pp. 1493-1499. Cited 158 times. doi: 10.1016/j.jmaa.2007.09.065Liu, J.-h., Song, X.-q. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations (2010) Journal of Functional Analysis, 258 (1), pp. 196-207. Cited 53 times. doi: 10.1016/j.jfa.2009.06.007Lizama, C. Regularized solutions for abstract Volterra equations (Open Access) (2000) Journal of Mathematical Analysis and Applications, 243 (2), pp. 278-292. Cited 157 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/8/6/index.htt doi: 10.1006/jmaa.1999.6668Lizama, C. An operator theoretical approach to a class of fractional order differential equations (Open Access) (2011) Applied Mathematics Letters, 24 (2), pp. 184-190. Cited 44 times. doi: 10.1016/j.aml.2010.08.042Lizama, C., N'Guérékata, G.M. Bounded Mild Solutions for Semilinear Integro Differential Equations in Banach Spaces (2010) Integral Equations and Operator Theory, 68 (2), pp. 207-227. Cited 68 times. doi: 10.1007/s00020-010-1799-2N’Guérékata, G.M. (2001) Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Cited 399 times. Kluwer Academic/Plenum Publishers, New YorkPodlubny, I. (1999) Fractional Differential Equations. Cited 24755 times. Academic Press, San DiegoPrüss, J. (1993) Evolutionary Integral Equations and Applications. Cited 738 times. Birkhäuser VerlagSamko, S.G., Kilbas, A.A., Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Cited 10351 times. Gordon and Breach, New York, Translation from the Russian edition, Nauka i Tekhnika, Minsk (1987)Stojanović, M., Gorenflo, R. Nonlinear two-term time fractional diffusion-wave problem (Open Access) (2010) Nonlinear Analysis: Real World Applications, 11 (5), pp. 3512-3523. Cited 27 times. doi: 10.1016/j.nonrwa.2009.12.012Xiao, T.-J., Liang, J., Zhang, J. Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces (2008) Semigroup Forum, 76 (3), pp. 518-524. Cited 162 times. doi: 10.1007/s00233-007-9011-yZhang, C.Y. (2003) Almost Periodic Type Functions and Ergodicity. Cited 232 times. Science Press, Kluwer Academic Publishers, New YorkZhang, C. Pseudo almost periodic solutions of some differential equations (1994) Journal of Mathematical Analysis and Applications, 181 (1), pp. 62-76. Cited 270 times. doi: 10.1006/jmaa.1994.1005Zhang, C.Y. Pseudo almost periodic solutions of some differential equations, II (1995) Journal of Mathematical Analysis and Applications, 192 (2), pp. 543-561. Cited 163 times. doi: 10.1006/jmaa.1995.1189http://purl.org/coar/resource_type/c_6501ORIGINALPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdfPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdfapplication/pdf447221https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/1/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf8d573a1fede7ee1b7637a3a0d05db77cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.txtPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.txtExtracted texttext/plain26164https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/4/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.txtf13ab5a1a0f3b5a7443fd346e00ddba0MD54THUMBNAILPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.jpgPseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.jpgGenerated Thumbnailimage/jpeg5265https://repositorio.utb.edu.co/bitstream/20.500.12585/12196/5/Pseudo-asymptotic-solutions-of-fractional-order-semilinear-equationsBanach-Journal-of-Mathematical-Analysis.pdf.jpga5f6906c463fdc1238086704e0393228MD5520.500.12585/12196oai:repositorio.utb.edu.co:20.500.12585/121962023-07-20 00:17:45.439Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |