Pseudo asymptotic solutions of fractional order semilinear equations
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of peri...
- Autores:
-
Alvarez-Pardo, Edgardo
Lizama, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12196
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12196
- Palabra clave:
- Asymptotic solutions
Generalized semigroup theory;
Pseudo
Sectorial operators
Two-term time fractional derivative
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
Summary: | Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique. |
---|