Pseudo asymptotic solutions of fractional order semilinear equations

Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of peri...

Full description

Autores:
Alvarez-Pardo, Edgardo
Lizama, Carlos
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12196
Acceso en línea:
https://hdl.handle.net/20.500.12585/12196
Palabra clave:
Asymptotic solutions
Generalized semigroup theory;
Pseudo
Sectorial operators
Two-term time fractional derivative
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique.