Topological Invariants of Principal G-Bundles with Singularities

principal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifol...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8879
Acceso en línea:
https://hdl.handle.net/20.500.12585/8879
Palabra clave:
G-structure
Obstruction
Principal bundle with singularities
Singularity of G-structure
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_62a01dc5b6d938a067cb88913c29f6d4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8879
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Topological Invariants of Principal G-Bundles with Singularities
title Topological Invariants of Principal G-Bundles with Singularities
spellingShingle Topological Invariants of Principal G-Bundles with Singularities
G-structure
Obstruction
Principal bundle with singularities
Singularity of G-structure
title_short Topological Invariants of Principal G-Bundles with Singularities
title_full Topological Invariants of Principal G-Bundles with Singularities
title_fullStr Topological Invariants of Principal G-Bundles with Singularities
title_full_unstemmed Topological Invariants of Principal G-Bundles with Singularities
title_sort Topological Invariants of Principal G-Bundles with Singularities
dc.subject.keywords.none.fl_str_mv G-structure
Obstruction
Principal bundle with singularities
Singularity of G-structure
topic G-structure
Obstruction
Principal bundle with singularities
Singularity of G-structure
description principal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifold M defines reduction of the orthonormal frame bundle of M to the subgroup O(n − 1) ⊂ O(n) on the set M \ Σ, where Σ is the set of zeros of this vector field. The aim of this paper is to construct topological invariants of principal bundles with singularities. To do this we apply the obstruction theory to the sectionM → P¯ /Gcorresponding to the reduction and obtain the topological invariant as a class in Hn−k(M,M \ Σ; πn−k−1(G¯ /G)). We study the properties of this invariants and, in particular, consider cases k = 0 y k = n − 1. © 2018, Pleiades Publishing, Ltd.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:33Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:33Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-633
dc.identifier.issn.none.fl_str_mv 19950802
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8879
dc.identifier.doi.none.fl_str_mv 10.1134/S1995080218050013
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57076963500
6507151476
identifier_str_mv Lobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-633
19950802
10.1134/S1995080218050013
Universidad Tecnológica de Bolívar
Repositorio UTB
57076963500
6507151476
url https://hdl.handle.net/20.500.12585/8879
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pleiades Publishing
publisher.none.fl_str_mv Pleiades Publishing
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049590504&doi=10.1134%2fS1995080218050013&partnerID=40&md5=bce3246b966ea8a5b62709e9331e2607
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8879/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021557333262336
spelling 2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Lobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-63319950802https://hdl.handle.net/20.500.12585/887910.1134/S1995080218050013Universidad Tecnológica de BolívarRepositorio UTB570769635006507151476principal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifold M defines reduction of the orthonormal frame bundle of M to the subgroup O(n − 1) ⊂ O(n) on the set M \ Σ, where Σ is the set of zeros of this vector field. The aim of this paper is to construct topological invariants of principal bundles with singularities. To do this we apply the obstruction theory to the sectionM → P¯ /Gcorresponding to the reduction and obtain the topological invariant as a class in Hn−k(M,M \ Σ; πn−k−1(G¯ /G)). We study the properties of this invariants and, in particular, consider cases k = 0 y k = n − 1. © 2018, Pleiades Publishing, Ltd.Acknowledgement. This investigation was supported by Vicerrectoría de Investigaciones and the Faculty of Sciences of Universidad de los Andes.Recurso electrónicoapplication/pdfengPleiades Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049590504&doi=10.1134%2fS1995080218050013&partnerID=40&md5=bce3246b966ea8a5b62709e9331e2607Topological Invariants of Principal G-Bundles with Singularitiesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1G-structureObstructionPrincipal bundle with singularitiesSingularity of G-structureArias Amaya, FabiánMalakhaltsev M.Alekseevskij, D.V., Vinogradov, A.M., Lychagin, V.V., (1991) Geometry I. Basic Ideas and Concepts of Differential Geometry, Vol. 28 of Encyclopaedia of Mathematical Sciences, p. 255. , Springer, BerlinKobayashi, S., Nomizu, K., (1963) Foundations of Differential Geometry, 1. , Interscience, New York, LondonMolino, P., Théorie des G-structures: le problème d’equivalence (1977) Lect. NotesMath., 588, p. 1Sternberg, S., (1983) Lectures on Differential Geometry, , Chelsea, New YorkIvey, T.A., Landsberg, J.M., (2016) Cartan for the Beginners: Differential Geometry viaMoving Frames and Exterior Differential Systems, Vol. 175 of Graduate Studies in Mathematics, , AMS, ProvidenceMontgomery, R., (2002) A Tour of Subriemannian Geometries, Their Geodesics and Applications, Vol. 91 of Math. Surveys and Monographs, , AMS, ProvidenceBott, R.W., Tu, L.W., (1982) Differential forms in Algebraic Topology, Vol. 82 of Graduate Texts in Mathematics, , Springer, New York, Heidelberg, BerlinMilnor, J.W., Stasheff, J.D., (2005) Characteristic Classes, Vol. 32 of Texts and Readings in Mathematics, , Hindustan Book Agency, New DelhiKamber, F.W., Tondeur, P., (1975) Foliated Bundles and Characteristic Classes, , Springer-Verlag, BerlinZhitomirskii, M., (1992) Typical Singularities of Differential 1-forms and Pfaffian Equations, Vol. 113 of Translation of Mathematical Monographs, , AMS, ProvidenceMartinet, J., Sur les singularités des formes différentielles (1970) Ann. Inst. Fourier.Grenoble, 20, pp. 95-178Malakhaltsev, M., A bundle of local Hamiltonians on a symplectic manifold with Martinet singularities (2004) Russ. Math. (Iz. VUZ), 48 (11), pp. 41-47Malakhaltsev, M., Differential complex associated to closed differential forms of nonconstant rank (2006) Lobachevskii J.Math., 23, pp. 183-192Arteaga, J., Malakhalsev, M., Trejos, A., Isometry group and geodesics of theWagner lift of a Riemannian metric on two-dimensional manifold (2012) Lobachevskii J.Math., 33, pp. 293-311Arteaga, J.R., Malakhaltsev, M., Symmetries of sub-Riemannian surfaces (2011) J. Geom. Phys., 61, pp. 290-308Arias, F.A., Arteaga, J.R., Malakhaltsev, M., 3-webs with singularities (2016) Lobachevskii J.Math., 37, pp. 1-20Arias, F.A., Malakhaltsev, M., A generalization of the Gauss–Bonnet–Hopf–Poincaréformula for sections and branched sections of bundles (2017) J. Geom. Phys, 121, pp. 108-122Mukherjee, A., (2015) Differential Topology, Vol. 72 of Texts and Readings in Mathematics, , Birkhäuser, BaselDubrovin, B.A., Fomenko, A.T., Novikov, S.P., (1990) Modern Geometry—Methods and Applications, Part III: Introduction to Homology Theory, Vol. 124 of Graduate Texts in Mathematics, , Springer, New York etcJakubszyk, B., Zhitomirskii, M., Local reduction theorems and invariants for singular contact structures (2001) Ann. Inst. Fourier, 51, pp. 237-295Steenrod, N., (1951) The Topology of Fibre Bundles, , Princeton Univ. Press, Princetonhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8879/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8879oai:repositorio.utb.edu.co:20.500.12585/88792023-05-25 11:41:51.409Repositorio Institucional UTBrepositorioutb@utb.edu.co