Kinematic parameter estimation using close range photogrammetry for sport applications
In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performanc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9023
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9023
- Palabra clave:
- Close range photogrammetry
Color detection
Object tracking
OpenCV
Processing
Bioinformatics
Data acquisition
Hardware
Processing
Sports
Close range photogrammetry
Color detection
Data acquisition hardware
Detection and tracking
HSV color models
Low cost hardware
Object tracking
OpenCV
Photogrammetry
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_62968c99e8db68d1f93574b32c29ebf0 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9023 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Kinematic parameter estimation using close range photogrammetry for sport applications |
title |
Kinematic parameter estimation using close range photogrammetry for sport applications |
spellingShingle |
Kinematic parameter estimation using close range photogrammetry for sport applications Close range photogrammetry Color detection Object tracking OpenCV Processing Bioinformatics Data acquisition Hardware Processing Sports Close range photogrammetry Color detection Data acquisition hardware Detection and tracking HSV color models Low cost hardware Object tracking OpenCV Photogrammetry |
title_short |
Kinematic parameter estimation using close range photogrammetry for sport applications |
title_full |
Kinematic parameter estimation using close range photogrammetry for sport applications |
title_fullStr |
Kinematic parameter estimation using close range photogrammetry for sport applications |
title_full_unstemmed |
Kinematic parameter estimation using close range photogrammetry for sport applications |
title_sort |
Kinematic parameter estimation using close range photogrammetry for sport applications |
dc.contributor.editor.none.fl_str_mv |
Garcia-Arteaga J.D. Brieva J. Lepore N. Romero E. |
dc.subject.keywords.none.fl_str_mv |
Close range photogrammetry Color detection Object tracking OpenCV Processing Bioinformatics Data acquisition Hardware Processing Sports Close range photogrammetry Color detection Data acquisition hardware Detection and tracking HSV color models Low cost hardware Object tracking OpenCV Photogrammetry |
topic |
Close range photogrammetry Color detection Object tracking OpenCV Processing Bioinformatics Data acquisition Hardware Processing Sports Close range photogrammetry Color detection Data acquisition hardware Detection and tracking HSV color models Low cost hardware Object tracking OpenCV Photogrammetry |
description |
In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performance of the sportsman and avoid injuries or accidents. We used a web-cam as the data acquisition hardware and develop the software stack in Processing using the OpenCV library. Our algorithm extracts size, position, velocity, and acceleration measurements of the bar along the course of the exercise. We present detailed characteristics of the system with their results in a controlled setting. The current work improves the detection and tracking capabilities from a previous version of this system by using HSV color model instead of RGB. Preliminary results show that the system is able to profile the movement of the bar as well as determine the size, position, velocity, and acceleration values of a marker/target in scene. The average error finding the size of object at four meters of distance is less than 4%, and the error of the acceleration value is 1.01% in average. © 2015 SPIE. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:47Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:47Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 9681 |
dc.identifier.isbn.none.fl_str_mv |
9781628419160 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9023 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2208354 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56682785300 26325154200 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 9681 9781628419160 0277786X 10.1117/12.2208354 Universidad Tecnológica de Bolívar Repositorio UTB 56682785300 26325154200 |
url |
https://hdl.handle.net/20.500.12585/9023 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
17 November 2015 through 19 November 2015 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958225751&doi=10.1117%2f12.2208354&partnerID=40&md5=7e450cde6b7e74b3af8af68ff00d72af Scopus2-s2.0-84958225751 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
11th International Symposium on Medical Information Processing and Analysis, SIPAIM 2015 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9023/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021593769181184 |
spelling |
Garcia-Arteaga J.D.Brieva J.Lepore N.Romero E.Magre Colorado, Luz AlejandraMartínez Santos J.C.2020-03-26T16:32:47Z2020-03-26T16:32:47Z2015Proceedings of SPIE - The International Society for Optical Engineering; Vol. 968197816284191600277786Xhttps://hdl.handle.net/20.500.12585/902310.1117/12.2208354Universidad Tecnológica de BolívarRepositorio UTB5668278530026325154200In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performance of the sportsman and avoid injuries or accidents. We used a web-cam as the data acquisition hardware and develop the software stack in Processing using the OpenCV library. Our algorithm extracts size, position, velocity, and acceleration measurements of the bar along the course of the exercise. We present detailed characteristics of the system with their results in a controlled setting. The current work improves the detection and tracking capabilities from a previous version of this system by using HSV color model instead of RGB. Preliminary results show that the system is able to profile the movement of the bar as well as determine the size, position, velocity, and acceleration values of a marker/target in scene. The average error finding the size of object at four meters of distance is less than 4%, and the error of the acceleration value is 1.01% in average. © 2015 SPIE.Prometeo - Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion;Red Nacional de Investigacion y Educacion del Ecuador;Universidad Nacional de Colombia Sede Bogota, CIM at labRecurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958225751&doi=10.1117%2f12.2208354&partnerID=40&md5=7e450cde6b7e74b3af8af68ff00d72afScopus2-s2.0-8495822575111th International Symposium on Medical Information Processing and Analysis, SIPAIM 2015Kinematic parameter estimation using close range photogrammetry for sport applicationsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fClose range photogrammetryColor detectionObject trackingOpenCVProcessingBioinformaticsData acquisitionHardwareProcessingSportsClose range photogrammetryColor detectionData acquisition hardwareDetection and trackingHSV color modelsLow cost hardwareObject trackingOpenCVPhotogrammetry17 November 2015 through 19 November 2015Shenk, T., (2005) Introduction to Photogrammetry, p. 43210. , The Ohio State University. Department of Civil and Environmental Engineering and Geodetic Science, 2070 Neil Ave., Columbus, OHVelloso, E., Bulling, A., Gellersen, H., Towards qualitative assessment of weight lifting exercises using body-worn sensors (2011) Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 587-588Harbili, E., A gender-based kinematic and kinetic analysis of the snatch lift in elite weightlifters in 69-kg category (2012) Journal of Sports Science and Medicine, 11, pp. 162-169Garhammer, J., Biomechanical proles of olympic weightlifters (1985) International Journal of Sports Biome-chanics, 1, pp. 122-130Gourgoulis, V., Aggeloussis, N., Antoniou, P., Christoforidis, C., Mavromatis, G., Garas, A., Comparative 3-dimensional kinematic analysis of the snatch technique in elite male and female Greek weightlifters (2002) Journal of Strength and Conditioning Research, 16, pp. 359-366Campos, J., Poletaev, P., Cuesta, A., Pablos, C., Tbar, J., Estudio del mvimiento de arrancada en halterolia durante ciclos de repeticiones de alta intensidad mediante anlisis cinemtico: Estudio de caso (2004) European Journal of Human Movement, 12, pp. 39-45Grande, I., Meana, M., Lpez, J., Tom, I., Aguado, J., Biomecanica del lanzamiento de peso: Estudio del modelo tecnico individual (2002) Medicina Del Deporte, 19, pp. 187-195Barbero, J., Soto, V., Granda, J., Diseno, desarrollo y validacion de un sistema fotogrametrico para la valoracion cinematica de la competicion en deportes de equipo (2005) European Journal of Human Movement, 13, pp. 145-160Mallo, J., Garca-Aranda, J., Navarro, E., Analisis Biomecanico Aplicado A la Valoracion Del Rendimiento Tecnico Del Arbitro de Futbol, , http://cienciadeporte.eweb.unex.es/congreso/04%20val/pdf/C123.pdf, Accessed on 2015Mallo, J., Navarro, E., Analisis biomecanico aplicado a la evaluacion del rendimiento tecnico de los arbitros y arbitros asistentes de futbol (2009) Revista Kronos, 14, pp. 123-130Mallo, J., Garca-Aranda, J., Navarro, E., Optimizacion del rendimiento de los arbitros de futbol con ayuda del analisis biomecanico (2005) Biomecanica, 12, pp. 97-103Mallo, J., Garca-Aranda, J., Navarro, E., Analisis del rendimiento fsico de los arbitros de futbol durante partidos de competicion ocial motricidad (2006) European Journal of Human Movement, 17, pp. 25-39Mallo, J., (2006) Analisis Del Rendimiento Fsico de Los Arbitros y Arbitros Asistentes Durante la Competicion en El Futbol, , Tesis de doctorado Universidad Politecnica de MadridMontero, J., Parra, F., Parrilla, E., Medina, E., Lpez, J., Moreno, R., Castelli, A., Bermejo, I., Kinescan/ibv v11: Valoracion biomecanica en tiempo real Revista de Biomecanica (2013) Instituto de Biomecanica de Valencia, 59, pp. 35-38Loi, A., (2004) Kinovea, , http://www.kinovea.org, 1901 Accessed on 2015Torres, A., Analisis biomecanico de la esgrima mediante sistemas optoelectronicos de analisis de movimiento. estudio de caso: deportista de alto rendimiento (2007) Revista Ingeniera Biomedica. Escuela de Ingeniera de Antioquia, 2, pp. 30-39Italia, B.B., Btselite. Solucion Integral Multifactorial Para El Analisis Clnico Del MovimientoNoz, J.M., Henao, O., Lopez, J., Sistema de rehabilitacion basado en el uso de analisis biomecanico y videojuegos mediante el sensor kinect (2013) Tecno. Logicas., Edicion Especial, pp. 43-54Muoz, J., Villada, J., Giraldo, J., Exergames: una herramienta tecnolgica para la actividad fsica Rev Med de Ris, 19, pp. 126-130Gianikellis, K., Pantrigo, J., Tena, J., Diseo y desarrollo del paquete informtico biomsoft que permite realizar anlisis biomecnicos y evaluacin de la motricidad humana normal y patolgica (2003) Conferencia Internacional Sobre Deporte Adaptado. Mlaga-SpainValencia De Biomecnica, I.D.E., Informacin Tcnica Dinascan, , http://gestion.ibv.org/gestoribv/index.php/productos/descargables/430-ibv-dinascan/le, Accessed on 2015Magre, L., Martinez Santos, J., Using close range photogrammetric method to estimate kinetic variables in olympic-style weightlifting (2014) Engineering Mechatronics and Automation (CIIMA) 2014 III Interna-tional Congress of, pp. 1-4. , Oct(2014) Q. HiTech Qhm495lm Web Camera, , http://www.qhmpl.com/QHM495LM-Web-Camera.html, Accessed on 2014(2001) Processing.org, Processing., , http://www.processing.org, Accessed on 2013Borenstein, G., (2012) Opencv for Processing Library, , https://github.com/atduskgreg/opencvprocessing, Accessed on 2013Hinault, X., (2012) Javacv Pro Library Documentation, , https://github.com/atduskgreg/opencvprocessing, Accessed on 2013Grum, M., (2011) Stack Exchange Fotography How Do i Calculate the Distance of An Object in A Photo, , http://photo.stackexchange.com/questions/12434/how-do-i-calculate-the-distance-of-an-object-ina-photo, Accessed on 2014(2014) O. Developers Team: Itseez about Opencv, , http://opencv.org/about.html, Accedido en 2015Bouguet, J., (2013) Camera Calibration Toolbox for Matlab Accedido en 2015, , http://www.vision.caltech.edu/bouguetj/calib, docSebastian, P., Voon, Y.V., Comley, R., Colour space eect on tracking in video surveillance (2010) Interna-tional Journal on Electrical Engineering and Informatics, 2, pp. 298-312Zarit, B.D., Super, B.J., Quek, F.K.H., Comparison of ve color models in skin pixel classication (1999) Proceedings of the International Workshop on Recognition, Analysis, Tracking of Faces and Gestures in Real-Time Systems, pp. 58-63Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S., Improving shadow suppression in moving object detection with hsv color information (2001) Proceedings Intelligent Transportation Systems, pp. 298-312Classroom, T.P., Acceleration of Gravity, , http://www.physicsclassroom.com/class/1DKin/Lesson-5/Acceleration-of-Gravity, Accessed on 2015Weatherall, I.L., Coombs, B.D., Skin color measurements in terms of cielab color space values (1992) Journal of Investigative Dermatology, 99 (4), pp. 468-473Moroney, N., Fairchild, M.D., Hunt, R.W., Li, C., Luo, M.R., Newman, T., The ciecam02 color appearance model (2002) Color and Imaging Conference, (1), pp. 23-27. , Society for Imaging Science and Technology 2002http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9023/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9023oai:repositorio.utb.edu.co:20.500.12585/90232023-05-26 16:11:29.527Repositorio Institucional UTBrepositorioutb@utb.edu.co |