Transient phenomena during the emptying process of a single pipe with water–air interaction
Emptying pipelines can be critical in many water distribution networks because subatmospheric pressure troughs could cause considerable damage to the system due to the expansion of entrapped air. Researchers have given relatively little attention to emptying processes compared to filling processes....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9143
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9143
- Palabra clave:
- Air valve
Air–water
Entrapped air
Pipelines emptying
Transient flow
Water distribution networks
Pipelines
Water distribution systems
Air valves
Computational model
Entrapped airs
Pressure oscillation
Subatmospheric pressures
Transient flow
Transient phenomenon
Water distribution networks
Phase interfaces
Air-water interaction
Atmospheric pressure
Experimental study
Model validation
Pipe
Pipeline
Transient flow
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_617fb7ac743e6b3072d567c711de89a4 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9143 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
title |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
spellingShingle |
Transient phenomena during the emptying process of a single pipe with water–air interaction Air valve Air–water Entrapped air Pipelines emptying Transient flow Water distribution networks Pipelines Water distribution systems Air valves Computational model Entrapped airs Pressure oscillation Subatmospheric pressures Transient flow Transient phenomenon Water distribution networks Phase interfaces Air-water interaction Atmospheric pressure Experimental study Model validation Pipe Pipeline Transient flow |
title_short |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
title_full |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
title_fullStr |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
title_full_unstemmed |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
title_sort |
Transient phenomena during the emptying process of a single pipe with water–air interaction |
dc.subject.keywords.none.fl_str_mv |
Air valve Air–water Entrapped air Pipelines emptying Transient flow Water distribution networks Pipelines Water distribution systems Air valves Computational model Entrapped airs Pressure oscillation Subatmospheric pressures Transient flow Transient phenomenon Water distribution networks Phase interfaces Air-water interaction Atmospheric pressure Experimental study Model validation Pipe Pipeline Transient flow |
topic |
Air valve Air–water Entrapped air Pipelines emptying Transient flow Water distribution networks Pipelines Water distribution systems Air valves Computational model Entrapped airs Pressure oscillation Subatmospheric pressures Transient flow Transient phenomenon Water distribution networks Phase interfaces Air-water interaction Atmospheric pressure Experimental study Model validation Pipe Pipeline Transient flow |
description |
Emptying pipelines can be critical in many water distribution networks because subatmospheric pressure troughs could cause considerable damage to the system due to the expansion of entrapped air. Researchers have given relatively little attention to emptying processes compared to filling processes. The intricacy of computations of this phenomenon makes it difficult to predict the behaviour during emptying, and there are only a few reliable models in the literature. In this work, a computational model for simulating the transient phenomena in single pipes is proposed, and was validated using experimental results. The proposed model is based on a rigid column to analyse water movement, the air–water interface, and air pocket equations. Two practical cases were used to validate the model: (1) a single pipe with the upstream end closed, and (2) a single pipe with an air valve installed on the upstream end. The results show how the model accurately predicts the experimental data, including the pressure oscillation patterns and subatmospheric pressure troughs. © 2018, © 2018 International Association for Hydro-Environment Engineering and Research. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Hydraulic Research; Vol. 57, Núm. 3; pp. 318-326 |
dc.identifier.issn.none.fl_str_mv |
00221686 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9143 |
dc.identifier.doi.none.fl_str_mv |
10.1080/00221686.2018.1492465 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56074282700 57193337460 15220062200 57193863782 |
identifier_str_mv |
Journal of Hydraulic Research; Vol. 57, Núm. 3; pp. 318-326 00221686 10.1080/00221686.2018.1492465 Universidad Tecnológica de Bolívar Repositorio UTB 56074282700 57193337460 15220062200 57193863782 |
url |
https://hdl.handle.net/20.500.12585/9143 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049833382&doi=10.1080%2f00221686.2018.1492465&partnerID=40&md5=7bed223a0c67aeb7b7e72f03843d2977 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9143/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021625597657088 |
spelling |
2020-03-26T16:33:03Z2020-03-26T16:33:03Z2019Journal of Hydraulic Research; Vol. 57, Núm. 3; pp. 318-32600221686https://hdl.handle.net/20.500.12585/914310.1080/00221686.2018.1492465Universidad Tecnológica de BolívarRepositorio UTB56074282700571933374601522006220057193863782Emptying pipelines can be critical in many water distribution networks because subatmospheric pressure troughs could cause considerable damage to the system due to the expansion of entrapped air. Researchers have given relatively little attention to emptying processes compared to filling processes. The intricacy of computations of this phenomenon makes it difficult to predict the behaviour during emptying, and there are only a few reliable models in the literature. In this work, a computational model for simulating the transient phenomena in single pipes is proposed, and was validated using experimental results. The proposed model is based on a rigid column to analyse water movement, the air–water interface, and air pocket equations. Two practical cases were used to validate the model: (1) a single pipe with the upstream end closed, and (2) a single pipe with an air valve installed on the upstream end. The results show how the model accurately predicts the experimental data, including the pressure oscillation patterns and subatmospheric pressure troughs. © 2018, © 2018 International Association for Hydro-Environment Engineering and Research.Comisión Asesora de Investigación Científica y Técnica, CAICYTThis study was supported by the Program Fondecyt Regular [Project 1180660] of the Comisión Nacional de Investigación Científica y Tecnológica (Conicyt), Chile, http://data.crossref. org/fundingdata/funder/10.13039/501100002848.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049833382&doi=10.1080%2f00221686.2018.1492465&partnerID=40&md5=7bed223a0c67aeb7b7e72f03843d2977Transient phenomena during the emptying process of a single pipe with water–air interactioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air valveAir–waterEntrapped airPipelines emptyingTransient flowWater distribution networksPipelinesWater distribution systemsAir valvesComputational modelEntrapped airsPressure oscillationSubatmospheric pressuresTransient flowTransient phenomenonWater distribution networksPhase interfacesAir-water interactionAtmospheric pressureExperimental studyModel validationPipePipelineTransient flowFuertes Miquel, Vicente S.Coronado Hernández, Óscar EnriqueIglesias-Rey P.L.Mora-Meliá D.Bashiri-Atrabi, H., Hosoda, T., The motion of entrapped air cavities in inclined ducts (2015) Journal of Hydraulic Research, 53 (6), pp. 814-819Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of liquid length variation in hydraulic transients (1992) Journal of Hydraulic Engineering, 118 (12), pp. 1639-1650Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesis-Rey, P.L., Martínez-Solano, F.J., Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4)Fuertes, V., (2001) Hydraulic transients with entrapped air pockets, , Unpublished doctoral dissertation). Department of Hydraulic Engineering, Polytechnic University of Valencia, SpainFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical modelling of pipelines with air pockets and air valves (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061Guinot, V., The discontinuous profile method for simulating two-phase flow in pipes using the single component approximation (2001) International Journal for Numerical Methods in Fluids, 37 (3), pp. 341-359Hou, Q., Tijsseling, A., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Van't Westende, J., Experimental investigation on rapid filling of a large-scale pipeline (2014) Journal of Hydraulic Engineering, 140 (11), p. 04014053. , …Iglesias-Rey, P.L., Fuertes-Miquel, V.S., García-Mares, F.J., Martínez-Solano, F.J., (2014) 16th conference on water distribution system analysis, , Comparative study of intake and exhaust air flows of different commercial air valves., WDSA 2014, Bari, Italy (1412–1419Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., Garcia-Serra, J., Pipeline start-up with entrapped air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Van't Westende, J., Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. , …Lee, N., (2005) Effect of pressurization and expulsion of entrapped air in pipelines, , Unpublished doctoral dissertation). School of Civil and Environmental Engineering, Georgia Institute of Technology, United StatesLeon, A.S., Ghidaoui, M.S., Schmidt, A.R., Garcia, M.H., A robust two-equation model for transient-mixed flows (2010) Journal of Hydraulic Research, 48 (1), pp. 44-56Liou, C.P., Hunt, W.A., Filling of pipelines with undulating elevation profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539Liu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C., Rigid-plug elastic water model for transient pipe flow with entrapped air pocket (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803Malekpour, A., Karney, B., Column separation and rejoinder during rapid pipeline filling induced by a partial flow blockage (2014) Journal of Hydraulic Research, 52 (5), pp. 693-704Martin, C., (1976) Proceedings of the second international conference on pressure surges, , Entrapped air pipelines., London, EnglandMartins, S.C., Ramos, H.M., Almeida, A.B., (2010) Environmental hydraulics: Theoretical, experimental and computational solutions, , Mathematical modeling of pressurized system behaviour with entrapped air. Petra Amparo López Jiménez, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, G. Lopez-Patino, F. J. Martinez-Solano, & G. Palau-Salvador (Eds.), (61–64). Valencia, Spain: CRC PressMartins, S.C., Ramos, H.M., Almeida, A.B., Conceptual analogy for modelling entrapped air action in hydraulic systems (2015) Journal of Hydraulic Research, 53 (5), pp. 678-686Pozos, O., González, C.A., Giesecke, J., Marx, W., Rodal, E.A., Air entrapped in gravity pipeline systems (2010) Journal of Hydraulic Research, 48 (3), pp. 338-347Tijsseling, A.S., Hou, Q., Bozkuş, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) Journal of Pressure Vessel Technology, 138 (3)Wang, K., Shen, Q., Zhang, B., Modeling propagation of pressure surges with the formation of an air pocket in pipelines (2003) Computers & Fluids, 32 (9), pp. 1179-1194Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., CFD approach for column separation in water pipelines (2016) Journal of Hydraulic Engineering, 142 (10). , 04016036Wylie, E., Streeter, V., (1993) Fluid transients in systems, , New Jersey, NJ: Ed. Prentice HallZhou, L., Liu, D., Experimental investigation of entrapped air pocket in a partially full water pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Karney, B., Wang, P., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pockets (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9143/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9143oai:repositorio.utb.edu.co:20.500.12585/91432023-05-26 09:44:36.68Repositorio Institucional UTBrepositorioutb@utb.edu.co |