Vehicular road influence areas

Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities re...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8938
Acceso en línea:
https://hdl.handle.net/20.500.12585/8938
Palabra clave:
Air pollution
Impact area
Mobile sources
Vehicular emissions
Air pollution
Air quality
Air quality standards
Crashworthiness
Distribution functions
Magnetic levitation vehicles
Pollution
Roads and streets
Transportation
Environmental Authority
Impact area
Meteorological condition
Mobile sources
National Air Quality Standards
Pollutant concentration
Pollutant dispersions
Vehicular emission
Curves (road)
Air quality
Anthropogenic effect
Atmospheric pollution
Atmospheric transport
Concentration (composition)
Dimensionless number
Experimental study
Methodology
Particulate matter
Pollutant source
Traffic emission
Wind erosion
Air pollutant
Article
Atmospheric dispersion
Exhaust gas
Meteorology
Methodology
Motor vehicle
Motor vehicle tire
Particulate matter
Priority journal
Surface property
Weather
Wind erosion
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_604bd64a8cae9a1873cf284556c55c56
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8938
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Vehicular road influence areas
title Vehicular road influence areas
spellingShingle Vehicular road influence areas
Air pollution
Impact area
Mobile sources
Vehicular emissions
Air pollution
Air quality
Air quality standards
Crashworthiness
Distribution functions
Magnetic levitation vehicles
Pollution
Roads and streets
Transportation
Environmental Authority
Impact area
Meteorological condition
Mobile sources
National Air Quality Standards
Pollutant concentration
Pollutant dispersions
Vehicular emission
Curves (road)
Air quality
Anthropogenic effect
Atmospheric pollution
Atmospheric transport
Concentration (composition)
Dimensionless number
Experimental study
Methodology
Particulate matter
Pollutant source
Traffic emission
Wind erosion
Air pollutant
Article
Atmospheric dispersion
Exhaust gas
Meteorology
Methodology
Motor vehicle
Motor vehicle tire
Particulate matter
Priority journal
Surface property
Weather
Wind erosion
title_short Vehicular road influence areas
title_full Vehicular road influence areas
title_fullStr Vehicular road influence areas
title_full_unstemmed Vehicular road influence areas
title_sort Vehicular road influence areas
dc.subject.keywords.none.fl_str_mv Air pollution
Impact area
Mobile sources
Vehicular emissions
Air pollution
Air quality
Air quality standards
Crashworthiness
Distribution functions
Magnetic levitation vehicles
Pollution
Roads and streets
Transportation
Environmental Authority
Impact area
Meteorological condition
Mobile sources
National Air Quality Standards
Pollutant concentration
Pollutant dispersions
Vehicular emission
Curves (road)
Air quality
Anthropogenic effect
Atmospheric pollution
Atmospheric transport
Concentration (composition)
Dimensionless number
Experimental study
Methodology
Particulate matter
Pollutant source
Traffic emission
Wind erosion
Air pollutant
Article
Atmospheric dispersion
Exhaust gas
Meteorology
Methodology
Motor vehicle
Motor vehicle tire
Particulate matter
Priority journal
Surface property
Weather
Wind erosion
topic Air pollution
Impact area
Mobile sources
Vehicular emissions
Air pollution
Air quality
Air quality standards
Crashworthiness
Distribution functions
Magnetic levitation vehicles
Pollution
Roads and streets
Transportation
Environmental Authority
Impact area
Meteorological condition
Mobile sources
National Air Quality Standards
Pollutant concentration
Pollutant dispersions
Vehicular emission
Curves (road)
Air quality
Anthropogenic effect
Atmospheric pollution
Atmospheric transport
Concentration (composition)
Dimensionless number
Experimental study
Methodology
Particulate matter
Pollutant source
Traffic emission
Wind erosion
Air pollutant
Article
Atmospheric dispersion
Exhaust gas
Meteorology
Methodology
Motor vehicle
Motor vehicle tire
Particulate matter
Priority journal
Surface property
Weather
Wind erosion
description Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration. © 2016 Elsevier Ltd
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:38Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:38Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Atmospheric Environment; Vol. 151, pp. 108-116
dc.identifier.issn.none.fl_str_mv 13522310
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8938
dc.identifier.doi.none.fl_str_mv 10.1016/j.atmosenv.2016.12.006
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 54402814900
7103267573
57213524450
identifier_str_mv Atmospheric Environment; Vol. 151, pp. 108-116
13522310
10.1016/j.atmosenv.2016.12.006
Universidad Tecnológica de Bolívar
Repositorio UTB
54402814900
7103267573
57213524450
url https://hdl.handle.net/20.500.12585/8938
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85004028937&doi=10.1016%2fj.atmosenv.2016.12.006&partnerID=40&md5=3d48a487d1accf270850fbc6ce50761b
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8938/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724546531328
spelling 2020-03-26T16:32:38Z2020-03-26T16:32:38Z2017Atmospheric Environment; Vol. 151, pp. 108-11613522310https://hdl.handle.net/20.500.12585/893810.1016/j.atmosenv.2016.12.006Universidad Tecnológica de BolívarRepositorio UTB54402814900710326757357213524450Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration. © 2016 Elsevier LtdRecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85004028937&doi=10.1016%2fj.atmosenv.2016.12.006&partnerID=40&md5=3d48a487d1accf270850fbc6ce50761bVehicular road influence areasinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air pollutionImpact areaMobile sourcesVehicular emissionsAir pollutionAir qualityAir quality standardsCrashworthinessDistribution functionsMagnetic levitation vehiclesPollutionRoads and streetsTransportationEnvironmental AuthorityImpact areaMeteorological conditionMobile sourcesNational Air Quality StandardsPollutant concentrationPollutant dispersionsVehicular emissionCurves (road)Air qualityAnthropogenic effectAtmospheric pollutionAtmospheric transportConcentration (composition)Dimensionless numberExperimental studyMethodologyParticulate matterPollutant sourceTraffic emissionWind erosionAir pollutantArticleAtmospheric dispersionExhaust gasMeteorologyMethodologyMotor vehicleMotor vehicle tireParticulate matterPriority journalSurface propertyWeatherWind erosionHuertas M.E.Huertas, J.I.Valencia A.BADC, British Atmospheric Data Centre (2012), http://badc.nerc.ac.uk/home/index.html, Available at:Barrett, S.R.H., Britter, R.E., Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources (2009) Atmos. Environ., 43 (20), pp. 3249-3258. , http://www.sciencedirect.com/science/article/pii/S1352231009002428, Available at:CEPMIEP, Coordinated European Programme on Particulate Matter Emission Inventories (2014), http://www.air.sk/tno/cepmeip/, Available at:Chakraborty, M.K., Determination of the emission rate from various opencast mining operations (2002) Environ. Model. Softw., 17 (5), pp. 467-480Fylstra, D., Design and use of the microsoft excel solver (1998) Interfaces, 28 (5), pp. 29-55Godoy, S.M., Assessment of impact distances for particulate matter dispersion: a stochastic approach (2009) Reliab. Eng. Syst. Saf., 94 (10), pp. 1658-1665Heist, D., Estimating near-road pollutant dispersion: a model inter-comparison (2013) Transp. Res. Part D Transp. Environ., 25, pp. 93-105Huertas, J.I., Air quality impact assessment of multiple open pit coal mines in northern Colombia (2012) J. Environ. Manag., 93, pp. 121-129. , http://dx.doi.org/10.1016/j.jenvman.2011.08.007, Available at:Huertas, J.I., Assessment of the Area Affected by Particulate Matter Generated 4 by Freight Transportation over Unpaved Roads Using Computational Fluid 5 Dynamics (2016)IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales (2009), http://www.ideam.gov.co/web/entidad, Available at:Instituto Nacional de Vias, Indice de aplanamiento y de alargamiento de los agregados para carreteras (2007) Norma I. N. V. E., pp. 230-242Kuhns, H., Testing Re-entrained Aerosol Kinetic Emissions from Roads : a new approach to infer silt loading on roadways (2001) Atmos. Environ., 35 (16), pp. 2815-2825Kutner, M.H., Applied Linear Statistical Models (2004), http://www.jhs14.business.msstate.edu/bqa9333/tips/15.70_TukeyMC_NeterKutner.pdf, Available at:Levitin, J., Evaluation of the CALINE4 and CAR-FMI models against measurements near a major road (2005) Atmos. Environ., 39 (25), pp. 4439-4452NAEI, U., National Atmospheric Emissions Inventory (2014), http://naei.defra.gov.uk/data/ef-all, Available at:Nicholson, K.W., The effects of vehicle activity on particle resuspension (1989) J. Aerosol Sci., 20 (8), pp. 1425-1428. , http://www.sciencedirect.com/science/article/pii/0021850289908537, Available at:Sahlodin, A.M., Sotudeh-Gharebagh, R., Zhu, Y., Modeling of dispersion near roadways based on the vehicle-induced turbulence concept (2007) Atmos. Environ., 41 (1), pp. 92-102USEPA, Volume I Chapter 13: Miscellaneous Sources. Section 13.2.1 (2011), http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0201.pdf, AP 42 fifth ed. Available at:USEPA, Volume I Chapter 13: Miscellaneous Sources. Section 13.2.2 (2006), http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf, AP 42 fifth ed. Available at:USEPA, Sampling of ambient air for total suspended particulate matter (SPM) and PM10 using high volume (HV) sampler (1999) Compend. method IO-2.1., pp. 1-74USEPA, Support Center for Regulatory Atmospheric Modeling (2015)USEPA, Unpaved Roads (2007), http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf, Available at:USEPA, User's Guide for He AMS/EPA Regulatory Model - AERMOD (2004)Venkatram, A., Analysis of air quality data near roadways using a dispersion model (2007) Atmos. Environ., 41 (40), pp. 9481-9497Venkatram, A., Horst, T.W., Approximating dispersion from a finite line source (2006) Atmos. Environ., 40 (13), pp. 2401-2408. , http://www.sciencedirect.com/science/article/B6VH3-4J7308D-2/2/2f78a0fa87632676345eb548b3b7eae2, Available at:WebMet, Met Data (1990), http://www.webmet.com/met_data.html, Available at:WHO, Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide (2005)World Meteorological Organization, Guide to Meteorological Instruments and Methods of Observation (2008)Yura, E.A., Kear, T., Niemeier, D., Using CALINE dispersion to assess vehicular PM2.5 emissions (2007) Atmos. Environ., 41 (38), pp. 8747-8757http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8938/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8938oai:repositorio.utb.edu.co:20.500.12585/89382023-05-26 13:22:04.117Repositorio Institucional UTBrepositorioutb@utb.edu.co