Differential diagnosis of hemorrhagic fevers using ARTMAP

The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms po...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9102
Acceso en línea:
https://hdl.handle.net/20.500.12585/9102
Palabra clave:
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
Artificial intelligence
Diseases
Learning algorithms
Learning systems
Neural networks
Patient monitoring
Pattern recognition
Statistical tests
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Malaria
Diagnosis
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_602f901c9a9240806f422757a14c0708
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9102
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Differential diagnosis of hemorrhagic fevers using ARTMAP
title Differential diagnosis of hemorrhagic fevers using ARTMAP
spellingShingle Differential diagnosis of hemorrhagic fevers using ARTMAP
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
Artificial intelligence
Diseases
Learning algorithms
Learning systems
Neural networks
Patient monitoring
Pattern recognition
Statistical tests
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Malaria
Diagnosis
title_short Differential diagnosis of hemorrhagic fevers using ARTMAP
title_full Differential diagnosis of hemorrhagic fevers using ARTMAP
title_fullStr Differential diagnosis of hemorrhagic fevers using ARTMAP
title_full_unstemmed Differential diagnosis of hemorrhagic fevers using ARTMAP
title_sort Differential diagnosis of hemorrhagic fevers using ARTMAP
dc.subject.keywords.none.fl_str_mv ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
Artificial intelligence
Diseases
Learning algorithms
Learning systems
Neural networks
Patient monitoring
Pattern recognition
Statistical tests
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Malaria
Diagnosis
topic ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
Artificial intelligence
Diseases
Learning algorithms
Learning systems
Neural networks
Patient monitoring
Pattern recognition
Statistical tests
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Malaria
Diagnosis
description The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms possess some useful qualities to tackle this kind of pattern recognition problems. In this paper, a neural-network-based approach to the differential diagnosis of Dengue Fever, Leptospirosis and Malaria, using the Adaptive Resonance Theory Map (ARTMAP) family is discussed. The use of an Artificial Immune System (CLONALG) led to the identification of a subset of symptoms that enhanced the performance of the classifiers considered. Training, validation and testing phases were conducted using a dataset consisting of medical charts from patients treated in the last 10 years at Napoleón Franco Pareja Children Hospital in Cartagena, Colombia. Results obtained on the test set are promising, and support the feasibility of this approach. © Springer-Verlag Berlin Heidelberg 2012.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:57Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:57Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 7637 LNAI, pp. 221-230
dc.identifier.isbn.none.fl_str_mv 9783642346538
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9102
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-642-34654-5_23
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56341358400
55783129400
55782490400
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 7637 LNAI, pp. 221-230
9783642346538
03029743
10.1007/978-3-642-34654-5_23
Universidad Tecnológica de Bolívar
Repositorio UTB
56341358400
55783129400
55782490400
url https://hdl.handle.net/20.500.12585/9102
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferenceplace.none.fl_str_mv Cartagena de Indias
dc.relation.conferencedate.none.fl_str_mv 13 November 2012 through 16 November 2012
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906654078&doi=10.1007%2f978-3-642-34654-5_23&partnerID=40&md5=28abcb7b52766f4d2de66fc2dcb420af
Scopus2-s2.0-84906654078
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 13th Ibero-American Conference on Advancesin Artificial Intelligence, IBERAMIA 2012
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9102/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021612482068480
spelling 2020-03-26T16:32:57Z2020-03-26T16:32:57Z2012Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 7637 LNAI, pp. 221-230978364234653803029743https://hdl.handle.net/20.500.12585/910210.1007/978-3-642-34654-5_23Universidad Tecnológica de BolívarRepositorio UTB563413584005578312940055782490400The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms possess some useful qualities to tackle this kind of pattern recognition problems. In this paper, a neural-network-based approach to the differential diagnosis of Dengue Fever, Leptospirosis and Malaria, using the Adaptive Resonance Theory Map (ARTMAP) family is discussed. The use of an Artificial Immune System (CLONALG) led to the identification of a subset of symptoms that enhanced the performance of the classifiers considered. Training, validation and testing phases were conducted using a dataset consisting of medical charts from patients treated in the last 10 years at Napoleón Franco Pareja Children Hospital in Cartagena, Colombia. Results obtained on the test set are promising, and support the feasibility of this approach. © Springer-Verlag Berlin Heidelberg 2012.Sociedad Colombiana de Computacion (SCo2);Universidad de Caldas;Universidad Nacional de Colombia;Universidad Tecnologica de Bolivar en Cartagena;Universidad Tecnologica de PereiraRecurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84906654078&doi=10.1007%2f978-3-642-34654-5_23&partnerID=40&md5=28abcb7b52766f4d2de66fc2dcb420afScopus2-s2.0-8490665407813th Ibero-American Conference on Advancesin Artificial Intelligence, IBERAMIA 2012Differential diagnosis of hemorrhagic fevers using ARTMAPinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fARTMAPDengueDifferential diagnosisHemorrhagic feverLeptospirosisMachine learningMalariaNeural networksArtificial intelligenceDiseasesLearning algorithmsLearning systemsNeural networksPatient monitoringPattern recognitionStatistical testsARTMAPDengueDifferential diagnosisHemorrhagic feverLeptospirosisMalariaDiagnosisCartagena de Indias13 November 2012 through 16 November 2012Caicedo W.Quintana Álvarez, Moisés RamónPinzón H.Brown, M., Vickers, I., Salas, R., Smikle, M., Leptospirosis in suspected cases of dengue in jamaica 2002-2007 (2010) Tropical Doctor, 40 (2), pp. 92-94Burnet, F., (1959) The Clonal Selection Theory of Acquired Immunity, , Vanderbilt University PressCarpenter, G., Default artmap (2003) International Joint Conference on Neural Networks (IJCNN 2003), 2, pp. 1396-1401. , IEEECarpenter, G., Grossberg, S., A massively parallel architecture for a self-organizing neural pattern recognition m achine (1987) Computer Vision, Graphics, and Image Processing, 37 (1), pp. 54-115Carpenter, G., Grossberg, S., ART 2-self-organization of stable category recognition codes for analog input patterns (1987) Applied Optics, 26 (23), pp. 4919-4930Carpenter, G., Grossberg, S., ART3-Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures (1990) Neural Networks, 3 (2), pp. 129-152Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J., Rosen, D., Fuzzy artmap-A neural network architecture for incremental supervised learning of analog multid imensional maps (1992) IEEE Transactions on Neural Networks, 3 (5), pp. 698-713Carpenter, G., Grossberg, S., Rosen, D., Fuzzy art-fast stable learning and categorization of analog patterns b y an adaptive resonance system (1991) Neural Networks, 4 (6), pp. 759-771Carpenter, G., Markuzon, N., Artmap-ic and medical diagnosis-instance counting and inconsistent cases (1998) Neural Networks, 11 (2), pp. 323-336Chadwick, D., Arch, B., Wilder-Smith, A., Paton, N., Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features-application of logistic regression analysis (2006) Journal of Clinical Virology, 35 (2), pp. 147-153De Castro, L.N., Von Zuben, F.J., Learning and optimization using the clonal selection principle (2002) IEEE Transactions on Evolutionary Computation, 6 (3), pp. 239-251Downs, J., Harrison, R., Kennedy, R., Cross, S., Application of the fuzzy artmap neural network model to medical pattern classification tasks (1996) Artificial Intelligence in Medicine, 8 (4), pp. 403-428Ellis, T., Imrie, A., Katz, A., Effler, P., Underrecognition of leptospirosis during a dengue fever outbreak in Hawaii 2001-2002 (2008) Vector-Borne and Zoonotic Diseases, 8 (4), pp. 541-547Goodman, P., Kaburlasos, V., Egbert, D., Carpenter, G., Grossberg, S., Reynolds, J., Rosen, D., Hartz, A., Fuzzy artmap neural network compared to linear discriminant analysis prediction of the length of hospital stay in patients with pneumonia (1992) IEEE Intl. Conf. on Systems Man and Cybernetics (ICSMC 1992), 1, pp. 748-753Halstead, S.E., (2008) Dengue, Tropical Medicine-Science and Practice, , (ed.) Imperial College PressKgrostad, D., Plasmodium species (malaria) (2000) Principles and Practice of Infectious Diseases, pp. 2818-2831. , Mandell, G., Bennet, J.E., Dolin, R. (eds.) Churchill LivingstoneKohonen, T., Self-organized formation of topologically correct feature maps (1982) Biological Cybernetics, 43 (1), pp. 59-69Levett, P., Branch, S., Edwards, C., Detection of dengue infection in patients investigated for leptospirosis in barbados (2000) The American Journal of Tropical Medicine and Hygiene, 62 (1), pp. 112-114Libraty, D.H., Myint, K.S.A., Murray, C.K., Gibbons, R.V., Mammen, M.P., Endy, T.P., Li, W., Ennis, F.A., A comparative study of leptospirosis and dengue in thai children (2007) PLoS Neglected Tropical Diseases, 1 (3), pp. e111Markuzon, N., Gaehde, S., Ash, A., Carpenter, G., Moskowitz, M., Predicting risk of A N adverse event in complex medical data sets using fuzzy artmap network (1994) Technical Report Series, pp. 93-96. , Artificial Intelligence in Medicine-Interpreting Clinical DataPotts, J., Rothman, A., Clinic al and laboratory features that distinguish dengue from other febrile illnesses in endemic populations (2008) Tropical Medicine & International Health, 13 (11), pp. 1328-1340Tappero, J., Ashford, D., Perkins, B., Leptospira species (leptospirosis) (2000) Principles and Practice of Infectious Diseases, pp. 2495-2501. , Mandell, G., Bennet, J.E., Dolin, R. (eds.) Churchill LivingstoneTsai, T., Flaviviruses (2000) Principles and Practice of Infectious Diseases, pp. 1714-1735. , Mandell, G., Bennet, J.E., Dolin, R. (eds.) Churchill LivingstoneYang, Y., An evaluation of statis tical approaches to text categorization (1999) Information Retrieval, 1 (1), pp. 69-90http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9102/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9102oai:repositorio.utb.edu.co:20.500.12585/91022023-04-24 09:35:09.739Repositorio Institucional UTBrepositorioutb@utb.edu.co