CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY

Indexed keywords SciVal Topics Metrics Abstract This article shows the results of the performance study of a combined cycle plant made up of a Siemens STG-800 gas turbine and a MACCHI heat recovery boiler (HRSG) designed to produce 47.5 MW of electricity and 81908 kg / h of steam operating under ISO...

Full description

Autores:
Fajardo, Juan
Guette, Dawing
Barreto, Deibys
Cardona, Camilo
Baldiris, Ildefonso
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12343
Acceso en línea:
https://hdl.handle.net/20.500.12585/12343
Palabra clave:
Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5f00108960484d333b3baab1f83e308e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12343
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
title CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
spellingShingle CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
title_short CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
title_full CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
title_fullStr CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
title_full_unstemmed CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
title_sort CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY
dc.creator.fl_str_mv Fajardo, Juan
Guette, Dawing
Barreto, Deibys
Cardona, Camilo
Baldiris, Ildefonso
dc.contributor.author.none.fl_str_mv Fajardo, Juan
Guette, Dawing
Barreto, Deibys
Cardona, Camilo
Baldiris, Ildefonso
dc.subject.keywords.spa.fl_str_mv Costs And Cost Analysis;
Exergy;
Cogeneration Systems
topic Costs And Cost Analysis;
Exergy;
Cogeneration Systems
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Indexed keywords SciVal Topics Metrics Abstract This article shows the results of the performance study of a combined cycle plant made up of a Siemens STG-800 gas turbine and a MACCHI heat recovery boiler (HRSG) designed to produce 47.5 MW of electricity and 81908 kg / h of steam operating under ISO conditions (15 ° C and 60% relative humidity and 1 atm), the system is part of the steam and electric power generation section of a crude oil refinery in the city of Cartagena de Indias. The objective of this research is to quantify the real inefficiencies in each of the equipment applying conventional and advanced exergetic analysis, to achieve this the investigation has been ordered as follows: first, the basic thermodynamics at the equipment boundaries is defined, define performance parameters that compare the adjustment of the thermodynamic model with the values provided by the manufacturer, the rate of exergy destruction and exergy efficiency are obtained from conventional analysis, advanced exergetic analysis allows obtaining avoidable, unavoidable, endogenous, exogenous exergies and the combined, finally, the mexogenous exergetic analysis allows to know the amount of energy that is lost due to the interactions between the equipment. The thermodynamic model is adjusted with an average error of 2% using design KPIs such as net power, heat rate and thermal efficiency, it was obtained that the exergy destruction reaches 83.5MW, 15% is avoidable and the 8% is avoidable endogenous, the mexogenous analysis shows that inefficiencies in the compressor refer to all equipment, by focusing efforts on improving its conditions, up to 25% of the total exergy destruction can be recovered. Copyright © 2021 by ASME
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:24:46Z
dc.date.available.none.fl_str_mv 2023-07-21T16:24:46Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Fajardo, J., Guette, D., Barreto, D., Cardona, C., & Baldiris, I. (2021, November). Conventional and advanced exergetic analysis for the combined cycle of power plant with gas turbine of a refinery. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85642, p. V08BT08A011). American Society of Mechanical Engineers.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12343
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE2021-70521
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Fajardo, J., Guette, D., Barreto, D., Cardona, C., & Baldiris, I. (2021, November). Conventional and advanced exergetic analysis for the combined cycle of power plant with gas turbine of a refinery. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85642, p. V08BT08A011). American Society of Mechanical Engineers.
10.1115/IMECE2021-70521
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12343
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv ASME International Mechanical Engineering Congress and Exposition (Vol. 85642, p. V08BT08A011)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/1/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/4/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/5/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdf.jpg
bitstream.checksum.fl_str_mv e3c9fbd809d7732116101d75d2789750
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
e6774457fbcdd79a93c882b7c1b6c60a
26600a92ee82c88ec731709ff8ad86f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021619470827520
spelling Fajardo, Juan5681b114-d542-428e-a5ed-8e6ceeb90db3Guette, Dawing9d3a45a4-561a-47f5-a0b9-296a77d17531Barreto, Deibys9295bc7a-88e7-4c5c-a26a-b285014a141eCardona, Camilo91b225f9-21d6-4065-91ef-14b77611d106Baldiris, Ildefonso37716a05-6644-41b5-beaf-3a9450595f9b2023-07-21T16:24:46Z2023-07-21T16:24:46Z20212023Fajardo, J., Guette, D., Barreto, D., Cardona, C., & Baldiris, I. (2021, November). Conventional and advanced exergetic analysis for the combined cycle of power plant with gas turbine of a refinery. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85642, p. V08BT08A011). American Society of Mechanical Engineers.https://hdl.handle.net/20.500.12585/1234310.1115/IMECE2021-70521Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIndexed keywords SciVal Topics Metrics Abstract This article shows the results of the performance study of a combined cycle plant made up of a Siemens STG-800 gas turbine and a MACCHI heat recovery boiler (HRSG) designed to produce 47.5 MW of electricity and 81908 kg / h of steam operating under ISO conditions (15 ° C and 60% relative humidity and 1 atm), the system is part of the steam and electric power generation section of a crude oil refinery in the city of Cartagena de Indias. The objective of this research is to quantify the real inefficiencies in each of the equipment applying conventional and advanced exergetic analysis, to achieve this the investigation has been ordered as follows: first, the basic thermodynamics at the equipment boundaries is defined, define performance parameters that compare the adjustment of the thermodynamic model with the values provided by the manufacturer, the rate of exergy destruction and exergy efficiency are obtained from conventional analysis, advanced exergetic analysis allows obtaining avoidable, unavoidable, endogenous, exogenous exergies and the combined, finally, the mexogenous exergetic analysis allows to know the amount of energy that is lost due to the interactions between the equipment. The thermodynamic model is adjusted with an average error of 2% using design KPIs such as net power, heat rate and thermal efficiency, it was obtained that the exergy destruction reaches 83.5MW, 15% is avoidable and the 8% is avoidable endogenous, the mexogenous analysis shows that inefficiencies in the compressor refer to all equipment, by focusing efforts on improving its conditions, up to 25% of the total exergy destruction can be recovered. Copyright © 2021 by ASME9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ASME International Mechanical Engineering Congress and Exposition (Vol. 85642, p. V08BT08A011)CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERYinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Costs And Cost Analysis;Exergy;Cogeneration SystemsLEMBCartagena de IndiasIbrahim, T.K., Mohammed, M.K., Awad, O.I., Abdalla, A.N., Basrawi, F., Mohammed, M.N., Najafi, G., (...), Mamat, R. A comprehensive review on the exergy analysis of combined cycle power plants (2018) Renewable and Sustainable Energy Reviews, 90, pp. 835-850. Cited 95 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.03.072Nadir, M., Ghenaiet, A., Carcasci, C. Thermo-economic optimization of heat recovery steam generator for a range of gas turbine exhaust temperatures (2016) Applied Thermal Engineering, 106, pp. 811-826. Cited 31 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.06.035Aminov, Z., Nakagoshi, N., Xuan, T.D., Higashi, O., Alikulov, K. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan (2016) Applied Thermal Engineering, 103, pp. 501-509. Cited 35 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.158Jassim, R. Thermo-Economic Analysis of Gas Turbines Power Plants with Cooled Air Intake (2015) Int. J. Energy Power Eng, 4 (4), p. 205. Cited 6 times. n.oIglesias Garcia, S., Ferreiro Garcia, R., Carbia Carril, J., Iglesias Garcia, D. Critical review of the first-law efficiency in different power combined cycle architectures (2017) Energy Conversion and Management, 148, pp. 844-859. Cited 16 times. doi: 10.1016/j.enconman.2017.06.037Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (2012) Energies, 5 (6), pp. 1850-1863. Cited 92 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850Morosuk, T., Tsatsaronis, G. Advanced exergy-based methods used to understand and improve energy-conversion systems (2019) Energy, 169, pp. 238-246. Cited 79 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.11.123Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (Open Access) (2009) Energy, 34 (3), pp. 384-391. Cited 326 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007Cziesla, F., Tsatsaronis, G., Gao, Z. Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant (2006) Energy, 31 (10-11), pp. 1472-1489. Cited 184 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2005.08.001Balli, O. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous (Open Access) (2017) Applied Thermal Engineering, 111, pp. 152-169. Cited 41 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.09.036Boyaghchi, F.A., Molaie, H. Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm (2015) Energy, Part 2 93, pp. 2267-2279. Cited 43 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.10.094Ameri, M., Ahmadi, P., Hamidi, A. Energy, exergy and exergoeconomic analysis of a steam power plant: A case study (Open Access) (2009) International Journal of Energy Research, 33 (5), pp. 499-512. Cited 246 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/121562257/PDFSTART doi: 10.1002/er.1495Ahmadi, P., Dincer, I. Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA) (2010) Energy, 35 (12), pp. 5161-5172. Cited 192 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2010.07.050Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant (2012) Energy, 41 (1), pp. 146-152. Cited 198 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2011.05.028Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., Paitazoglou, C. Environmental evaluation of a power plant using conventional and advanced exergy-based methods (2012) Energy, 45 (1), pp. 23-30. Cited 73 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2012.01.042Tsatsaronis, G. Recent developments in exergy analysis and exergoeconomics (2008) International Journal of Exergy, 5 (5-6), pp. 489-499. Cited 111 times. http://www.inderscience.com/ijex doi: 10.1504/IJEX.2008.020822Tsatsaronis, G. Strengths and Limitations of Exergy Analysis (1999) Thermodynamic Optimization of Complex Energy Systems, pp. 93-100. Cited 150 times. en A. Bejan y E. Mamut, Eds. Dordrecht: Springer NetherlandsMoran, M. J., Tsatsaronis, G., Bejan, A. (1995) Thermal design and optimization, p. 2. Cited 4552 times.Morosuk, T., Tsatsaronis, G. A new approach to the exergy analysis of absorption refrigeration machines (2008) Energy, 33 (6), pp. 890-907. Cited 306 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2007.09.012Morosuk, T., Tsatsaronis, G. Advanced Exergy Analysis for Chemically Reacting Systems – Application to a Simple Open Gas-Turbine System, p. 7.Morosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 201 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006Vučković, G.D., Stojiljković, M.M., Vukić, M.V. First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler (2015) Energy Conversion and Management, 104, pp. 8-16. Cited 27 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2015.06.001http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdfScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdfapplication/pdf212321https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/1/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdfe3c9fbd809d7732116101d75d2789750MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdf.txtScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdf.txtExtracted texttext/plain2909https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/4/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdf.txte6774457fbcdd79a93c882b7c1b6c60aMD54THUMBNAILScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdf.jpgScopus - Document details - CONVENTIONAL AND ADVANCED EXERGETIC ANALYSIS FOR THE COMBINED CYCLE OF POWER PLANT WITH GAS TURBINE OF A REFINERY.pdf.jpgGenerated Thumbnailimage/jpeg6937https://repositorio.utb.edu.co/bitstream/20.500.12585/12343/5/Scopus%20-%20Document%20details%20-%20CONVENTIONAL%20AND%20ADVANCED%20EXERGETIC%20ANALYSIS%20FOR%20THE%20COMBINED%20CYCLE%20OF%20POWER%20PLANT%20WITH%20GAS%20TURBINE%20OF%20A%20REFINERY.pdf.jpg26600a92ee82c88ec731709ff8ad86f8MD5520.500.12585/12343oai:repositorio.utb.edu.co:20.500.12585/123432023-07-22 00:18:05.576Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=