The Kriging integration method applied to the boundary element analysis of Poisson problems
A novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Met...
- Autores:
-
Narváez, A.
Useche Vivero, Jairo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9564
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9564
https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344
- Palabra clave:
- Boundary element method
Dual reciprocity boundary element method (DRBEM)
Domain integrals
Simple Kriging method
Cartesian transformation method (CTM)
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_5eef31d2b11b78a58e703bdc595ad2bb |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9564 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
title |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
spellingShingle |
The Kriging integration method applied to the boundary element analysis of Poisson problems Boundary element method Dual reciprocity boundary element method (DRBEM) Domain integrals Simple Kriging method Cartesian transformation method (CTM) |
title_short |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
title_full |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
title_fullStr |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
title_full_unstemmed |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
title_sort |
The Kriging integration method applied to the boundary element analysis of Poisson problems |
dc.creator.fl_str_mv |
Narváez, A. Useche Vivero, Jairo |
dc.contributor.author.none.fl_str_mv |
Narváez, A. Useche Vivero, Jairo |
dc.subject.keywords.spa.fl_str_mv |
Boundary element method Dual reciprocity boundary element method (DRBEM) Domain integrals Simple Kriging method Cartesian transformation method (CTM) |
topic |
Boundary element method Dual reciprocity boundary element method (DRBEM) Domain integrals Simple Kriging method Cartesian transformation method (CTM) |
description |
A novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Method (KIM), comprises the use of the Simple Kriging Method in non-overlapping patches for obtaining the weights of the integration points located inside. As it is necessary to compute the integrals of the covariance function prior to obtaining these weights, this can be efficiently realized using the Cartesian Transformation Method. The domain integrals over all the generated partitions are then computed and added to obtain the value of the whole-domain integral. Using KIM, it is possible to evaluate approximately weakly singular domain integrals over simply or multiply connected domains without applying any transformation or regularization method to the singular integrand. The numerical results obtained in several 2D potential problems demonstrate that this integration scheme is as accurate as both the dual reciprocity method and RIM and less time consuming than the RIM. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-06T12:26:36Z |
dc.date.available.none.fl_str_mv |
2020-11-06T12:26:36Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.submitted.none.fl_str_mv |
2020-11-05 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9564 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.enganabound.2020.09.001 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001 10.1016/j.enganabound.2020.09.001 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9564 https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
20 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Engineering Analysis with Boundary Elements Volume 121, December 2020, Pages 1-20 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/1/102.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/3/102.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/4/102.pdf.jpg |
bitstream.checksum.fl_str_mv |
8b8083af490b5f181b73baf55134c96b e20ad307a1c5f3f25af9304a7a7c86b6 4ffb024deec1e0d0c49fa583a9a4aeab 046c15871270f70831029089541b9394 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021779059900416 |
spelling |
Narváez, A.bd7344a1-3791-46d4-a7ed-af6e436246d5Useche Vivero, Jairo6bed9359-4992-4e29-b0a3-2604d92954742020-11-06T12:26:36Z2020-11-06T12:26:36Z20202020-11-05Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001https://hdl.handle.net/20.500.12585/9564https://www.sciencedirect.com/science/article/abs/pii/S095579972030234410.1016/j.enganabound.2020.09.001Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Method (KIM), comprises the use of the Simple Kriging Method in non-overlapping patches for obtaining the weights of the integration points located inside. As it is necessary to compute the integrals of the covariance function prior to obtaining these weights, this can be efficiently realized using the Cartesian Transformation Method. The domain integrals over all the generated partitions are then computed and added to obtain the value of the whole-domain integral. Using KIM, it is possible to evaluate approximately weakly singular domain integrals over simply or multiply connected domains without applying any transformation or regularization method to the singular integrand. The numerical results obtained in several 2D potential problems demonstrate that this integration scheme is as accurate as both the dual reciprocity method and RIM and less time consuming than the RIM.20 páginasapplication/pdfengEngineering Analysis with Boundary Elements Volume 121, December 2020, Pages 1-20The Kriging integration method applied to the boundary element analysis of Poisson problemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Boundary element methodDual reciprocity boundary element method (DRBEM)Domain integralsSimple Kriging methodCartesian transformation method (CTM)info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de Indiashttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL102.pdf102.pdfapplication/pdf60648https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/1/102.pdf8b8083af490b5f181b73baf55134c96bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT102.pdf.txt102.pdf.txtExtracted texttext/plain1466https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/3/102.pdf.txt4ffb024deec1e0d0c49fa583a9a4aeabMD53THUMBNAIL102.pdf.jpg102.pdf.jpgGenerated Thumbnailimage/jpeg59447https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/4/102.pdf.jpg046c15871270f70831029089541b9394MD5420.500.12585/9564oai:repositorio.utb.edu.co:20.500.12585/95642023-04-24 09:16:54.437Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |