The Kriging integration method applied to the boundary element analysis of Poisson problems

A novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Met...

Full description

Autores:
Narváez, A.
Useche Vivero, Jairo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9564
Acceso en línea:
https://hdl.handle.net/20.500.12585/9564
https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344
Palabra clave:
Boundary element method
Dual reciprocity boundary element method (DRBEM)
Domain integrals
Simple Kriging method
Cartesian transformation method (CTM)
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_5eef31d2b11b78a58e703bdc595ad2bb
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9564
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv The Kriging integration method applied to the boundary element analysis of Poisson problems
title The Kriging integration method applied to the boundary element analysis of Poisson problems
spellingShingle The Kriging integration method applied to the boundary element analysis of Poisson problems
Boundary element method
Dual reciprocity boundary element method (DRBEM)
Domain integrals
Simple Kriging method
Cartesian transformation method (CTM)
title_short The Kriging integration method applied to the boundary element analysis of Poisson problems
title_full The Kriging integration method applied to the boundary element analysis of Poisson problems
title_fullStr The Kriging integration method applied to the boundary element analysis of Poisson problems
title_full_unstemmed The Kriging integration method applied to the boundary element analysis of Poisson problems
title_sort The Kriging integration method applied to the boundary element analysis of Poisson problems
dc.creator.fl_str_mv Narváez, A.
Useche Vivero, Jairo
dc.contributor.author.none.fl_str_mv Narváez, A.
Useche Vivero, Jairo
dc.subject.keywords.spa.fl_str_mv Boundary element method
Dual reciprocity boundary element method (DRBEM)
Domain integrals
Simple Kriging method
Cartesian transformation method (CTM)
topic Boundary element method
Dual reciprocity boundary element method (DRBEM)
Domain integrals
Simple Kriging method
Cartesian transformation method (CTM)
description A novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Method (KIM), comprises the use of the Simple Kriging Method in non-overlapping patches for obtaining the weights of the integration points located inside. As it is necessary to compute the integrals of the covariance function prior to obtaining these weights, this can be efficiently realized using the Cartesian Transformation Method. The domain integrals over all the generated partitions are then computed and added to obtain the value of the whole-domain integral. Using KIM, it is possible to evaluate approximately weakly singular domain integrals over simply or multiply connected domains without applying any transformation or regularization method to the singular integrand. The numerical results obtained in several 2D potential problems demonstrate that this integration scheme is as accurate as both the dual reciprocity method and RIM and less time consuming than the RIM.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-06T12:26:36Z
dc.date.available.none.fl_str_mv 2020-11-06T12:26:36Z
dc.date.issued.none.fl_str_mv 2020
dc.date.submitted.none.fl_str_mv 2020-11-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9564
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344
dc.identifier.doi.none.fl_str_mv 10.1016/j.enganabound.2020.09.001
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001
10.1016/j.enganabound.2020.09.001
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9564
https://www.sciencedirect.com/science/article/abs/pii/S0955799720302344
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Engineering Analysis with Boundary Elements Volume 121, December 2020, Pages 1-20
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/1/102.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/3/102.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/4/102.pdf.jpg
bitstream.checksum.fl_str_mv 8b8083af490b5f181b73baf55134c96b
e20ad307a1c5f3f25af9304a7a7c86b6
4ffb024deec1e0d0c49fa583a9a4aeab
046c15871270f70831029089541b9394
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021779059900416
spelling Narváez, A.bd7344a1-3791-46d4-a7ed-af6e436246d5Useche Vivero, Jairo6bed9359-4992-4e29-b0a3-2604d92954742020-11-06T12:26:36Z2020-11-06T12:26:36Z20202020-11-05Narváez, A., & Useche, J. (2020). The Kriging integration method applied to the boundary element analysis of Poisson problems. Engineering Analysis with Boundary Elements, 121, 1-20. https://doi.org/10.1016/j.enganabound.2020.09.001https://hdl.handle.net/20.500.12585/9564https://www.sciencedirect.com/science/article/abs/pii/S095579972030234410.1016/j.enganabound.2020.09.001Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Method (KIM), comprises the use of the Simple Kriging Method in non-overlapping patches for obtaining the weights of the integration points located inside. As it is necessary to compute the integrals of the covariance function prior to obtaining these weights, this can be efficiently realized using the Cartesian Transformation Method. The domain integrals over all the generated partitions are then computed and added to obtain the value of the whole-domain integral. Using KIM, it is possible to evaluate approximately weakly singular domain integrals over simply or multiply connected domains without applying any transformation or regularization method to the singular integrand. The numerical results obtained in several 2D potential problems demonstrate that this integration scheme is as accurate as both the dual reciprocity method and RIM and less time consuming than the RIM.20 páginasapplication/pdfengEngineering Analysis with Boundary Elements Volume 121, December 2020, Pages 1-20The Kriging integration method applied to the boundary element analysis of Poisson problemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Boundary element methodDual reciprocity boundary element method (DRBEM)Domain integralsSimple Kriging methodCartesian transformation method (CTM)info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de Indiashttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL102.pdf102.pdfapplication/pdf60648https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/1/102.pdf8b8083af490b5f181b73baf55134c96bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT102.pdf.txt102.pdf.txtExtracted texttext/plain1466https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/3/102.pdf.txt4ffb024deec1e0d0c49fa583a9a4aeabMD53THUMBNAIL102.pdf.jpg102.pdf.jpgGenerated Thumbnailimage/jpeg59447https://repositorio.utb.edu.co/bitstream/20.500.12585/9564/4/102.pdf.jpg046c15871270f70831029089541b9394MD5420.500.12585/9564oai:repositorio.utb.edu.co:20.500.12585/95642023-04-24 09:16:54.437Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=