An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation

This paper proposes a new solution methodology based on a mixed-integer conic formulation to locate and size photovoltaic (PV) generation units in AC distribution networks with a radial structure. The objective function comprises the annual expected energy costs of the conventional substation in add...

Full description

Autores:
Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Grisales-Noreña, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11127
Acceso en línea:
https://hdl.handle.net/20.500.12585/11127
https://doi.org/10.3390/math10152626
Palabra clave:
Photovoltaic system
Investment and operating costs
Mixed-integer conic optimization
Radial distribution networks
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5ee179e920eceac10e39804fc8849a27
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11127
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
title An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
spellingShingle An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
Photovoltaic system
Investment and operating costs
Mixed-integer conic optimization
Radial distribution networks
LEMB
title_short An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
title_full An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
title_fullStr An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
title_full_unstemmed An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
title_sort An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
dc.creator.fl_str_mv Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Grisales-Noreña, Luis Fernando
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Grisales-Noreña, Luis Fernando
dc.subject.keywords.spa.fl_str_mv Photovoltaic system
Investment and operating costs
Mixed-integer conic optimization
Radial distribution networks
topic Photovoltaic system
Investment and operating costs
Mixed-integer conic optimization
Radial distribution networks
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper proposes a new solution methodology based on a mixed-integer conic formulation to locate and size photovoltaic (PV) generation units in AC distribution networks with a radial structure. The objective function comprises the annual expected energy costs of the conventional substation in addition to the investment and operating costs of PV sources. The original optimization model that represents this problem belongs to the family of mixed-integer nonlinear programming (MINLP); however, the complexity of the power balance constraints make it difficult to find the global optimum. In order to improve the quality of the optimization model, a mixed-integer conic (MIC) formulation is proposed in this research in order to represent the studied problem. Numerical results in two test feeders composed of 33 and 69 nodes demonstrate the effectiveness of the proposed MIC model when compared to multiple metaheuristic optimizers such as the Chu and Beasley Genetic Algorithm, the Newton Metaheuristic Algorithm, the Vortex Search Algorithm, the Gradient-Based Metaheuristic Optimization Algorithm, and the Arithmetic Optimization Algorithm, among others. The final results obtained with the MIC model show improvements greater than USD 100,000 per year of operation. All simulations were run in the MATLAB programming environment, using its own scripts for all the metaheuristic algorithms and the disciplined convex tool known as CVX with the Gurobi solver in order to solve the proposed MIC model.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-05T12:25:33Z
dc.date.available.none.fl_str_mv 2022-10-05T12:25:33Z
dc.date.issued.none.fl_str_mv 2022-07-27
dc.date.submitted.none.fl_str_mv 2022-09-30
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Ramos-Paja, C.A.; Grisales-Noreña, L.F. An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation. Mathematics 2022, 10, 2626. https://doi.org/10.3390/math10152626
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11127
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/math10152626
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Ramos-Paja, C.A.; Grisales-Noreña, L.F. An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation. Mathematics 2022, 10, 2626. https://doi.org/10.3390/math10152626
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11127
https://doi.org/10.3390/math10152626
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Mathematics Vol. 10 N° 15 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/1/mathematics-10-02626-v2.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/4/mathematics-10-02626-v2.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/5/mathematics-10-02626-v2.pdf.jpg
bitstream.checksum.fl_str_mv 134bc1c3c10f97d1af9dbf268610a178
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
1c310b2a9d4bd5bc5ca2f4dbad797f37
8cf4378104cf4726afd03d6ed636b5c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596288909312
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Ramos-Paja, Carlos Andrésac1a64c3-4089-49e6-9f7a-b2285dd56903Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d12022-10-05T12:25:33Z2022-10-05T12:25:33Z2022-07-272022-09-30Montoya, O.D.; Ramos-Paja, C.A.; Grisales-Noreña, L.F. An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation. Mathematics 2022, 10, 2626. https://doi.org/10.3390/math10152626https://hdl.handle.net/20.500.12585/11127https://doi.org/10.3390/math10152626Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes a new solution methodology based on a mixed-integer conic formulation to locate and size photovoltaic (PV) generation units in AC distribution networks with a radial structure. The objective function comprises the annual expected energy costs of the conventional substation in addition to the investment and operating costs of PV sources. The original optimization model that represents this problem belongs to the family of mixed-integer nonlinear programming (MINLP); however, the complexity of the power balance constraints make it difficult to find the global optimum. In order to improve the quality of the optimization model, a mixed-integer conic (MIC) formulation is proposed in this research in order to represent the studied problem. Numerical results in two test feeders composed of 33 and 69 nodes demonstrate the effectiveness of the proposed MIC model when compared to multiple metaheuristic optimizers such as the Chu and Beasley Genetic Algorithm, the Newton Metaheuristic Algorithm, the Vortex Search Algorithm, the Gradient-Based Metaheuristic Optimization Algorithm, and the Arithmetic Optimization Algorithm, among others. The final results obtained with the MIC model show improvements greater than USD 100,000 per year of operation. All simulations were run in the MATLAB programming environment, using its own scripts for all the metaheuristic algorithms and the disciplined convex tool known as CVX with the Gurobi solver in order to solve the proposed MIC model.17 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Mathematics Vol. 10 N° 15 (2022)An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Photovoltaic systemInvestment and operating costsMixed-integer conic optimizationRadial distribution networksLEMBCartagena de IndiasStrezoski, L.; Stefani, I. Utility DERMS for Active Management of Emerging Distribution Grids with High Penetration of Renewable DERs. Electronics 2021, 10, 2027.Borghetti, A.; Nucci, C.A. Integration of distributed energy resources in distribution power systems. In Integration of Distributed Energy Resources in Power Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–50.Chicco, G.; Ciocia, A.; Colella, P.; Leo, P.D.; Mazza, A.; Musumeci, S.; Pons, E.; Russo, A.; Spertino, F. Introduction—Advances and Challenges in Active Distribution Systems. In Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–42.Jelti, F.; Allouhi, A.; Büker, M.S.; Saadani, R.; Jamil, A. Renewable Power Generation: A Supply Chain Perspective. Sustainability 2021, 13, 1271.Marneni, A.; Kulkarni, A.; Ananthapadmanabha, T. Loss Reduction and Voltage Profile Improvement in a Rural Distribution Feeder Using Solar Photovoltaic Generation and Rural Distribution Feeder Optimization Using HOMER. Procedia Technol. 2015, 21, 507–513.Elkadeem, M.R.; Alaam, M.A.; Azmy, A. Reliability Improvement of Power Distribution Systems using Advanced Distribution Automation. Renew. Energy Sustain. Dev. 2017, 3, 24–32.Strezoski, L.; Padullaparti, H.; Ding, F.; Baggu, M. Integration of Utility Distributed Energy Resource Management System and Aggregators for Evolving Distribution System Operators. J. Mod. Power Syst. Clean Energy 2022, 10, 277–285.Fernández, G.; Galan, N.; Marquina, D.; Martínez, D.; Sanchez, A.; López, P.; Bludszuweit, H.; Rueda, J. Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids. Energies 2020, 13, 4347Fischetti, M.; Pisinger, D. Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview. Bus. Inf. Syst. Eng. 2018, 61, 469–485Lakshmi, S.; Ganguly, S. Transition of Power Distribution System Planning from Passive to Active Networks: A State-of-the-Art Review and a New Proposal. In Sustainable Energy Technology and Policies; Springer: Singapore, 2017; pp. 87–117.Gomez, A.L.; Arredondo, C.A.; Luna, M.A.; Villegas, S.; Hernandez, J. Regulating the integration of renewable energy in Colombia: Implications of Law 1715 of 2014. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016Lezama, J.M.L.; Villada, F.; Galeano, N.M. Effects of Incentives for Renewable Energy in Colombia. Ing. Univ. 2017, 21.Montoya, O.D.; Rivas-Trujillo, E.; Hernández, J.C. A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization. Electronics 2022, 11, 961.Mai, T.T.; Nguyen, P.H.; Tran, Q.T.; Cagnano, A.; Carne, G.D.; Amirat, Y.; Le, A.T.; Tuglie, E.D. An overview of grid-edge control with the digital transformation. Electr. Eng. 2021, 103, 1989–2007.Bjørnebye, H.; Hagem, C.; Lind, A. Optimal location of renewable power. Energy 2018, 147, 1203–1215Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind. Eng. Ind. Aerodyn. 1994, 51, 105–116. [. Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52.Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990.Betakova, V.; Vojar, J.; Sklenicka, P. Wind turbines location: How many and how far? Appl. Energy 2015, 151, 23–31Sander, L.; Jung, C.; Schindler, D. Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind 2021, 1, 1–19O ˘guz, E.; ¸Sentürk, A.E. Selection of the Most Sustainable Renewable Energy System for Bozcaada Island: Wind vs. Photovoltaic. Sustainability 2019, 11, 4098. [López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279Sihotang, M.A.; Okajima, K. Photovoltaic Power Potential Analysis in Equator Territorial: Case Study of Makassar City, Indonesia. J. Power Energy Eng. 2017, 5, 15–29.Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158Mokarram, M.; Mokarram, M.J.; Khosravi, M.R.; Saber, A.; Rahideh, A. Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Sci. Rep. 2020, 10, 8200Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633.Montoya, O.D.; Grisales-Noreña, L.F.; Alvarado-Barrios, L.; Arias-Londoño, A.; Álvarez-Arroyo, C. Efficient Reduction in the Annual Investment Costs in AC Distribution Networks via Optimal Integration of Solar PV Sources Using the Newton Metaheuristic Algorithm. Appl. Sci. 2021, 11, 11525.Feron, S. Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review. Sustainability 2016, 8, 1326.Montoya, O.D.; Grisales-Noreña, L.F.; Giral-Ramírez, D.A. Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer. Sustainability 2022, 14, 3318.Chowdhury, S.; Matlokotsi, T. Optimal placement and sizing of renewable distributed generation in electricity networks considering different load models. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017.Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm. Sensors 2022, 22, 851Montoya, O.D.; Giral-Ramírez, D.A.; Hernández, J.C. Efficient Integration of PV Sources in Distribution Networks to Reduce Annual Investment and Operating Costs Using the Modified Arithmetic Optimization Algorithm. Electronics 2022, 11, 1680Montoya, O.D.; Grisales-Noreña, L.F.; Ramos-Paja, C.A. Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach. Computers 2022, 11, 53.Katsigiannis, Y.A.; Georgilakis, P.S.; Karapidakis, E.S. Hybrid Simulated Annealing–Tabu Search Method for Optimal Sizing of Autonomous Power Systems With Renewables. IEEE Trans. Sustain. Energy 2012, 3, 330–338.Lavaei, J.; Low, S.H. Zero Duality Gap in Optimal Power Flow Problem. IEEE Trans. Power Syst. 2012, 27, 92–107Zohrizadeh, F.; Josz, C.; Jin, M.; Madani, R.; Lavaei, J.; Sojoudi, S. A survey on conic relaxations of optimal power flow problem. Eur. J. Oper. Res. 2020, 287, 391–409.Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part II. IEEE Trans. Power Syst. 2013, 28, 2565–2572.Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.Gallego-Pareja, L.A.; Lopez-Lezama, J.M.; Gomez-Carmona, O. Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems. Ingeniería 2020, 25, 334–354Montoya-Giraldo, O.D.; Arias-Londoño, A.; Molina-Cabrera, A. Branch Optimal Power Flow Model for DC Networks with Radial Structure: A Conic Relaxation. Tecnura 2022, 26, 30–42Benson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALmathematics-10-02626-v2.pdfmathematics-10-02626-v2.pdfapplication/pdf337530https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/1/mathematics-10-02626-v2.pdf134bc1c3c10f97d1af9dbf268610a178MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmathematics-10-02626-v2.pdf.txtmathematics-10-02626-v2.pdf.txtExtracted texttext/plain58959https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/4/mathematics-10-02626-v2.pdf.txt1c310b2a9d4bd5bc5ca2f4dbad797f37MD54THUMBNAILmathematics-10-02626-v2.pdf.jpgmathematics-10-02626-v2.pdf.jpgGenerated Thumbnailimage/jpeg7981https://repositorio.utb.edu.co/bitstream/20.500.12585/11127/5/mathematics-10-02626-v2.pdf.jpg8cf4378104cf4726afd03d6ed636b5c4MD5520.500.12585/11127oai:repositorio.utb.edu.co:20.500.12585/111272022-10-06 00:18:31.946Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=