Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations

The load flow problem (LFP) in power distribution networks allows us to find the nodal voltage values within the electrical systems. These values, along with the system parameters, are useful to identify the (technical,economic, and environmental) operational indices and constraints that describe th...

Full description

Autores:
Grisales-Noreña, Luis Fernando
Morales-Duran, Juan C.
Velez-Garcia, Sebastián
Montoya, Oscar Danilo
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11845
Acceso en línea:
https://hdl.handle.net/20.500.12585/11845
https://doi.org/10.1016/j.rineng.2023.100915
Palabra clave:
Load flow
Power distribution system
Convergence analysis
Processing time
Meshed network
Radial network
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5eb4684e0555e0805d632045b3432469
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11845
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
title Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
spellingShingle Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
Load flow
Power distribution system
Convergence analysis
Processing time
Meshed network
Radial network
LEMB
title_short Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
title_full Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
title_fullStr Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
title_full_unstemmed Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
title_sort Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations
dc.creator.fl_str_mv Grisales-Noreña, Luis Fernando
Morales-Duran, Juan C.
Velez-Garcia, Sebastián
Montoya, Oscar Danilo
Gil-González, Walter
dc.contributor.author.none.fl_str_mv Grisales-Noreña, Luis Fernando
Morales-Duran, Juan C.
Velez-Garcia, Sebastián
Montoya, Oscar Danilo
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Load flow
Power distribution system
Convergence analysis
Processing time
Meshed network
Radial network
topic Load flow
Power distribution system
Convergence analysis
Processing time
Meshed network
Radial network
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The load flow problem (LFP) in power distribution networks allows us to find the nodal voltage values within the electrical systems. These values, along with the system parameters, are useful to identify the (technical,economic, and environmental) operational indices and constraints that describe the system’s behavior under anestablished load scenario. The solution of the LFP requires the implementation of numerical methods due toits mathematical model’s nonlinear and non-convex nature. In the specialized literature, multiple classical and modern methods seek to improve the solutions achieved in terms of convergence and processing times. However, the most efficient method in both radial and meshed networks has not been determined. Consequently, this study identified the most widely used and efficient classical and modern methods reported in the literature: Newton–Raphson (NR), Gauss-Seidel (GS), Iterative Sweep (IS), Successive Approximations (SA), Taylor’s Series (TS), and Triangular Method (TM). The analysis also identified and selected the most common test scenarios to validate the effectiveness of the proposed solution methods: 10-, 33-, and 69-node systems in radial and meshed topologies. The software employed to validate the processing times and convergence of the numerical methods was MATLAB. The results obtained by the different methods were compared, taking the NR methodology as the base case. Thanks to its convergence, this method is used in commercial software packages to solve the LFP, as is the case of DIgSILENT. After analyzing the results of this study, we can state that all the selected methods were suitable in terms of convergence. The greatest errors were 6.064 × 10−07 for power losses and 8.017 × 10−04 for nodal voltages, which are negligible values for practical purposes in radial and meshed networks. In this work, processing time was employed as the selection criterion, and TM was identified as the most efficient method for solving the AC power flow in radial and meshed topologies for all the scenarios analyzed.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-08T13:29:40Z
dc.date.available.none.fl_str_mv 2023-05-08T13:29:40Z
dc.date.issued.none.fl_str_mv 2023-01-23
dc.date.submitted.none.fl_str_mv 2023-05-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Grisales-Noreña, L. F., Morales-Duran, J. C., Velez-Garcia, S., Montoya, O. D., & Gil-González, W. (2023). Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations. Results in Engineering, 17 doi:10.1016/j.rineng.2023.100915
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11845
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.rineng.2023.100915
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Grisales-Noreña, L. F., Morales-Duran, J. C., Velez-Garcia, S., Montoya, O. D., & Gil-González, W. (2023). Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations. Results in Engineering, 17 doi:10.1016/j.rineng.2023.100915
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11845
https://doi.org/10.1016/j.rineng.2023.100915
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Results in Engineering - Vol. 17 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/1/1-s2.0-S2590123023000427-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/4/1-s2.0-S2590123023000427-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/5/1-s2.0-S2590123023000427-main.pdf.jpg
bitstream.checksum.fl_str_mv f9636a5032315e02b4ad6540f3a66379
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
db3fe485fb13a9e5f2f021e9b9dd690e
c55913dfe09e6821c109701dc099971c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021788033613824
spelling Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Morales-Duran, Juan C.605806ee-a5a3-4989-bd5e-e0d740da1a9bVelez-Garcia, Sebastiána48bbcf5-bcf8-4a55-b425-55198202ffa0Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter31e41d1d-191e-4bdd-b623-55ce85a65b9c2023-05-08T13:29:40Z2023-05-08T13:29:40Z2023-01-232023-05-05Grisales-Noreña, L. F., Morales-Duran, J. C., Velez-Garcia, S., Montoya, O. D., & Gil-González, W. (2023). Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations. Results in Engineering, 17 doi:10.1016/j.rineng.2023.100915https://hdl.handle.net/20.500.12585/11845https://doi.org/10.1016/j.rineng.2023.100915Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe load flow problem (LFP) in power distribution networks allows us to find the nodal voltage values within the electrical systems. These values, along with the system parameters, are useful to identify the (technical,economic, and environmental) operational indices and constraints that describe the system’s behavior under anestablished load scenario. The solution of the LFP requires the implementation of numerical methods due toits mathematical model’s nonlinear and non-convex nature. In the specialized literature, multiple classical and modern methods seek to improve the solutions achieved in terms of convergence and processing times. However, the most efficient method in both radial and meshed networks has not been determined. Consequently, this study identified the most widely used and efficient classical and modern methods reported in the literature: Newton–Raphson (NR), Gauss-Seidel (GS), Iterative Sweep (IS), Successive Approximations (SA), Taylor’s Series (TS), and Triangular Method (TM). The analysis also identified and selected the most common test scenarios to validate the effectiveness of the proposed solution methods: 10-, 33-, and 69-node systems in radial and meshed topologies. The software employed to validate the processing times and convergence of the numerical methods was MATLAB. The results obtained by the different methods were compared, taking the NR methodology as the base case. Thanks to its convergence, this method is used in commercial software packages to solve the LFP, as is the case of DIgSILENT. After analyzing the results of this study, we can state that all the selected methods were suitable in terms of convergence. The greatest errors were 6.064 × 10−07 for power losses and 8.017 × 10−04 for nodal voltages, which are negligible values for practical purposes in radial and meshed networks. In this work, processing time was employed as the selection criterion, and TM was identified as the most efficient method for solving the AC power flow in radial and meshed topologies for all the scenarios analyzed.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Engineering - Vol. 17 (2023)Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bcceLoad flowPower distribution systemConvergence analysisProcessing timeMeshed networkRadial networkLEMBCartagena de IndiasCampus TecnológicoPúblico generalO.D. Montoya, A. Molina-Cabrera, D.A. Giral-Ramírez, E. Rivas-Trujillo, J.A. Alarcón-Villamil, Optimal integration of D-STATCOM in distribution grids for an nual operating costs reduction via the discrete version sine-cosine algorithm, Results Eng. 16 (2022) 100768, https://doi.org/10.1016/j.rineng.2022.100768.F. Capitanescu, Critical review of recent advances and further developments needed in ac optimal power flow, Electr. Power Syst. Res. 136 (2016) 57–68.O.D. Montoya, V.M. Garrido, W. Gil-González, L.F. Grisales-Noreña, Power flow analysis in dc grids: two alternative numerical methods, IEEE Trans. Circuits Syst. II, Express Briefs 66 (11) (2019) 1865–1869.J. Montano, O.D. Garzón, A.A.R. Muñoz, L. Grisales-Noreña, O.D. Montoya, Appli cation of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks, Results Eng. 16 (2022) 100654.[5] I. Diahovchenko, R. Petrichenko, L. Petrichenko, A. Mahnitko, P. Korzh, M. Kolcun, Z. Conka, ˇ Mitigation of transformers’ loss of life in power distribution networks with high penetration of electric vehicles, Results Eng. 15 (2022) 100592.M. John, A general method of digital network analysis particularly suitable for use with low-speed computers, Proceedings of the IEE-Part A: Power Engineering 108 (41) (1961) 369–382.M. Laughton, M.H. Davies, Numerical Techniques in Solution of Power-System Load Flow Problems, Proceedings of the Institution of Electrical Engineers, vol. 111, IET, 1964, pp. 1575–1588.A. Vijayvargia, S. Jain, S. Meena, V. Gupta, M. Lalwani, Comparison between different load flow methodologies by analyzing various bus systems, Int. J. Electr. Eng. 9 (2) (2016) 127–138.M.L. Manrique, O.D. Montoya, V.M. Garrido, L.F. Grisales-Noreña, W. Gil-González, Sine-cosine algorithm for opf analysis in distribution systems to size distributed generators, in: Workshop on Engineering Applications, Springer, 2019, pp. 28–39.H.F. Farahani, A. Kazemi, S. Hosseini, A new algorithm for identifying branch and node after any bus to use load-flow in radial distribution systems, in: 2007 42nd International Universities Power Engineering Conference, IEEE, 2007, pp. 1129O.D. Montoya, On linear analysis of the power flow equations for dc and ac grids with cpls, IEEE Trans. Circuits Syst. II, Express Briefs 66 (12) (2019) 2032–2036L.F. Grisales, B.J. Restrepo Cuestas, et al., Ubicación y dimensionamiento de generación distribuida: Una revisión, Ciencia e Ingeniería Neogranadina 27 (2) (2017) 157–176K. López-Rodríguez, W. Gil-González, A. Escobar-Mejía, Design and implementation of a pi-pbc to manage bidirectional power flow in the dab of an sst, Results Eng. (2022) 100437.C.A.P. Meneses, J.R.S. Mantovani, Improving the grid operation and reliability cost of distribution systems with dispersed generation, IEEE Trans. Power Syst. 28 (3) (2013) 2485–2496.J.J. Grainger, W.D. Stevenson, Power systems analysis, 1996O.D. Montoya, A. Molina-Cabrera, J.C. Hernández, A comparative study on power flow methods applied to ac distribution networks with single-phase representation, Electronics 10 (21) (2021) 2573.J.-H. Teng, A modified Gauss–Seidel algorithm of three-phase power flow analysis in distribution networks, Int. J. Electr. Power Energy Syst. 24 (2) (2002) 97–102.J.-H. Teng, A direct approach for distribution system load flow solutions, IEEE Trans. Power Deliv. 18 (3) (2003) 882–887O.D. Montoya, L.F. Grisales-Noreña, W. Gil-González, Triangular matrix formulation for power flow analysis in radial dc resistive grids with cpls, IEEE Trans. Circuits Syst. II, Express Briefs 67 (6) (2019) 1094–1098A. Marini, S. Mortazavi, L. Piegari, M.-S. Ghazizadeh, An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive mod eling of distributed generations, Electr. Power Syst. Res. 170 (2019) 229–2W. Wu, B. Zhang, A three-phase power flow algorithm for distribution system power flow based on loop-analysis method, Int. J. Electr. Power Energy Syst. 30 (1) (2008) 8–15.S.Y. Bocanegra, W. Gil-González, O.D. Montoya, A new iterative power flow method for ac distribution grids with radial and mesh topologies, in: 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 4, IEEE, 2020, pp. 1–5.L.F. Grisales-Noreña, O.D. Montoya, C.A. Ramos-Paja, Q. Hernandez-Escobedo, A.-J. Perea-Moreno, Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso, Electronics 9 (11) (2020) 1808.A. Garces, Uniqueness of the power flow solutions in low voltage direct current grids, Electr. Power Syst. Res. 151 (2017) 149–153.J.A. Ocampo Toro, Despacho optimo de potencia en microrredes de corriente con tinua considerando variacion en la generacion eolica y solar y el comportamiento de demanda de energia, 2021.O.D. Montoya, W. Gil-González, D.A. Giral, On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence, Appl. Sci. 10 (17) (2020) 5802O.D. Montoya, W. Gil-González, L. Grisales-Noreña, An exact minlp model for optimal location and sizing of dgs in distribution networks: a general algebraic modeling system approach, Ain Shams Eng. J. 11 (2) (2020) 409–418A. Kumar Sharma, V. Murty, Analysis of mesh distribution systems considering load models and load growth impact with loops on system performance, J. Inst. Eng. (India), Ser. B 95 (4) (2014) 295–318.L.F. Grisales-Noreña, O.D. Montoya, W.J. Gil-González, A.-J. Perea-Moreno, M.-A. Perea-Moreno, A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors, Electronics 9 (12) (2020) 2062R. Villena-Ruiz, A. Honrubia-Escribano, J. Fortmann, E. Gómez-Lázaro, Field valida tion of a standard type 3 wind turbine model implemented in digsilent-powerfactory following iec 61400-27-1 guidelines, Int. J. Electr. Power Energy Syst. 116 (2020) 105553.D.L. Bernal-Romero, O.D. Montoya, A. Arias-Londoño, Solution of the optimal reactive power flow problem using a discrete-continuous cbga implemented in the digsilent programming language, Computers 10 (11) (2021) 151http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S2590123023000427-main.pdf1-s2.0-S2590123023000427-main.pdfapplication/pdf665922https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/1/1-s2.0-S2590123023000427-main.pdff9636a5032315e02b4ad6540f3a66379MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2590123023000427-main.pdf.txt1-s2.0-S2590123023000427-main.pdf.txtExtracted texttext/plain54012https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/4/1-s2.0-S2590123023000427-main.pdf.txtdb3fe485fb13a9e5f2f021e9b9dd690eMD54THUMBNAIL1-s2.0-S2590123023000427-main.pdf.jpg1-s2.0-S2590123023000427-main.pdf.jpgGenerated Thumbnailimage/jpeg7690https://repositorio.utb.edu.co/bitstream/20.500.12585/11845/5/1-s2.0-S2590123023000427-main.pdf.jpgc55913dfe09e6821c109701dc099971cMD5520.500.12585/11845oai:repositorio.utb.edu.co:20.500.12585/118452023-05-09 00:17:50.599Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=