Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review
Cardiovascular diseases are the main cause of death in the world, according to the World Health Organization. Among them, ischemic heart disease is at the top, followed by a stroke. Several studies have revealed that atrial fibrillation (AF), which is the most common cardiac arrhythmia, increases up...
- Autores:
-
Giraldo-Guzmán, Jader
Contreras-Ortiz, Sonia H.
Kotas, Marian
Castells, Francisco
Moroń, Tomasz
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12297
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12297
- Palabra clave:
- Atrial Fibrillation;
Supraventricular Premature Beat;
Brain Ischemia
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_5de09ec05eba07d2a43b138ce90f1b4e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12297 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
title |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
spellingShingle |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review Atrial Fibrillation; Supraventricular Premature Beat; Brain Ischemia LEMB |
title_short |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
title_full |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
title_fullStr |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
title_full_unstemmed |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
title_sort |
Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review |
dc.creator.fl_str_mv |
Giraldo-Guzmán, Jader Contreras-Ortiz, Sonia H. Kotas, Marian Castells, Francisco Moroń, Tomasz |
dc.contributor.author.none.fl_str_mv |
Giraldo-Guzmán, Jader Contreras-Ortiz, Sonia H. Kotas, Marian Castells, Francisco Moroń, Tomasz |
dc.subject.keywords.spa.fl_str_mv |
Atrial Fibrillation; Supraventricular Premature Beat; Brain Ischemia |
topic |
Atrial Fibrillation; Supraventricular Premature Beat; Brain Ischemia LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Cardiovascular diseases are the main cause of death in the world, according to the World Health Organization. Among them, ischemic heart disease is at the top, followed by a stroke. Several studies have revealed that atrial fibrillation (AF), which is the most common cardiac arrhythmia, increases up to five fold the overall risk of stroke. As AF can be asymptomatic, approximately 20% of the AF cases remain undiagnosed. AF can be detected by analyzing electrocardiography records. Many studies have been conducted to develop automatic methods for AF detection. This paper reviews some of the most relevant methods, classified into three groups: analysis of heart rate variability, analysis of the atrial activity, and hybrid methods. Their benefits and limitations are analyzed and compared, and our beliefs about where AF automatic detection research could be addressed are presented to improve its effectiveness and performance. © 2021 by Begell House, Inc. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:53:02Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:53:02Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Giraldo-Guzman, J., Contreras-Ortiz, S. H., Kotas, M., Castells, F., & Moron, T. (2021). Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review. Critical Reviews™ in Biomedical Engineering, 49(3). |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12297 |
dc.identifier.doi.none.fl_str_mv |
10.1615/CritRevBiomedEng.2022041650 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Giraldo-Guzman, J., Contreras-Ortiz, S. H., Kotas, M., Castells, F., & Moron, T. (2021). Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review. Critical Reviews™ in Biomedical Engineering, 49(3). 10.1615/CritRevBiomedEng.2022041650 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12297 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
20 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Biomedical Engineering, 49(3) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/1/CRB4903%284%29-41650.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/4/CRB4903%284%29-41650.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/5/CRB4903%284%29-41650.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 178ee02dee31a84d07fd325098de514c 4460e5956bc1d1639be9ae6146a50347 b51f803684407da913fffac786c09af3 6d660e5dd357f36130f73eae0eda1d1b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021566697046016 |
spelling |
Giraldo-Guzmán, Jader3d51dd20-1ff3-4272-aac3-a64b2c5356adContreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a8Kotas, Marian115f4d30-ba45-4bf6-bf66-152b622af835Castells, Francisco7fe49a07-6f9d-4462-adda-2fc09a85104aMoroń, Tomaszc19a62a6-ff70-425f-9d99-b7d695543d6a2023-07-21T15:53:02Z2023-07-21T15:53:02Z20212023Giraldo-Guzman, J., Contreras-Ortiz, S. H., Kotas, M., Castells, F., & Moron, T. (2021). Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review. Critical Reviews™ in Biomedical Engineering, 49(3).https://hdl.handle.net/20.500.12585/1229710.1615/CritRevBiomedEng.2022041650Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarCardiovascular diseases are the main cause of death in the world, according to the World Health Organization. Among them, ischemic heart disease is at the top, followed by a stroke. Several studies have revealed that atrial fibrillation (AF), which is the most common cardiac arrhythmia, increases up to five fold the overall risk of stroke. As AF can be asymptomatic, approximately 20% of the AF cases remain undiagnosed. AF can be detected by analyzing electrocardiography records. Many studies have been conducted to develop automatic methods for AF detection. This paper reviews some of the most relevant methods, classified into three groups: analysis of heart rate variability, analysis of the atrial activity, and hybrid methods. Their benefits and limitations are analyzed and compared, and our beliefs about where AF automatic detection research could be addressed are presented to improve its effectiveness and performance. © 2021 by Begell House, Inc.20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Biomedical Engineering, 49(3)Automated Atrial Fibrillation Detection by ECG Signal Processing: A Reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Atrial Fibrillation;Supraventricular Premature Beat;Brain IschemiaLEMBCartagena de Indias(2006) Working together for health: The world health report 2006: Policy briefs. Cited 969 times. Geneva: World Health OrgGomez, LA. Las enfermedades cardiovasculares: Un problema de salud pública y un reto global (2011) Biomedica, 31 (4). Cited 5 times.Scott, L., Li, N., Dobrev, D. Role of inflammatory signaling in atrial fibrillation (2019) International Journal of Cardiology, 287, pp. 195-200. Cited 82 times. www.elsevier.com/locate/ijcard doi: 10.1016/j.ijcard.2018.10.020Wolf, P.A., Abbott, R.D., Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The framingham study (1991) Stroke, 22 (8), pp. 983-988. Cited 5873 times. doi: 10.1161/01.STR.22.8.983(2017) Cardiovascular diseases. Cited 364 times. Geneva: World Health Org; From http://www.who.int/mediacentre/fact-sheets/fs317/en/Clua-Espuny, J.L., Lechuga-Duran, I., Bosch-Princep, R., Roso-Llorach, A., Panisello-Tafalla, A., Lucas-Noll, J., López-Pablo, C., (...), Gallofré López, M. Prevalence of undiagnosed atrial fibrillation and of that not being treated with anticoagulant drugs: The AFABE study (2013) Revista Espanola de Cardiologia, 66 (7), pp. 545-552. Cited 56 times. doi: 10.1016/j.recesp.2013.03.006Cervigón, R., Moreno, J., Castells, F. Entropy analysis of atrial activity morphology to study atrial fibrillation recurrences after ablation procedure (2015) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9043, pp. 146-154. Cited 5 times. https://www.springer.com/series/558 ISBN: 978-331916482-3 doi: 10.1007/978-3-319-16483-0_14Cervigon, R., Moreno, J., Millet, J., Castells, F. Multiscale principal component analysis to predict atrial fibrillation reversion to sinus rhythm (2016) Computing in Cardiology, 43, art. no. 7868780, pp. 465-468. Cited 2 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 ISBN: 978-150900896-4Cervigon, R., Moreno, J., Millet, J., Castells, F. Singular Spectrum Analysis of Atrial Activations to Predict Atrial Fibrillation Recurrence after Ablation Procedure (2018) Computing in Cardiology, 2018-September, art. no. 8743856. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 ISBN: 978-172810958-9 doi: 10.22489/CinC.2018.360Reiffel, J.A., Verma, A., Kowey, P.R., Halperin, J.L., Gersh, B.J., Wachter, R., Pouliot, E., (...), Ziegler, P.D. Incidence of previously undiagnosed atrial fibrillation using insertable cardiac monitors in a high-risk population: The REVEAL AF study (2017) JAMA Cardiology, 2 (10), pp. 1120-1127. Cited 171 times. https://jamanetwork.com/journals/jamacardiology/articlepdf/2650790/jamacardiology_reiffel_2017_oi_170047.pdf doi: 10.1001/jamacardio.2017.3180Cotter, P.E., Martin, M.P.J., Ring, L., Warburton, E.A., Belham, M., Pugh, P.J. Incidence of atrial fibrillation detected by implantable loop recorders in unexplained stroke (2013) Neurology, 80 (17), pp. 1546-1550. Cited 203 times. doi: 10.1212/WNL.0b013e31828f1828Marsili, I.A., Masè, M., Pisetta, V., Ricciardi, E., Andrighetti, A.O., Ravelli, F., Nollo, G. Optimized algorithms for atrial fibrillation detection by wearable tele-holter devices (2016) IEEE 2nd International Smart Cities Conference: Improving the Citizens Quality of Life, ISC2 2016 - Proceedings, art. no. 7580863. Cited 9 times. ISBN: 978-150901845-1 doi: 10.1109/ISC2.2016.7580863Kinlay, S., Leitch, J.W., Neil, A., Chapman, B.L., Hardy, D.B., Fletcher, P.J. Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations: A controlled clinical trial (1996) Annals of Internal Medicine, 124 (1 I), pp. 16-20. Cited 204 times. http://annals.org/issues.aspx doi: 10.7326/0003-4819-124-1_part_1-199601010-00003Schwartzman, D., Blagev, D.P., Brown, M.L., Mehra, R. Electrocardiographic events preceding onset of atrial fibrillation: Insights gained using an implantable loop recorder (2006) Journal of Cardiovascular Electrophysiology, 17 (3), pp. 243-246. Cited 12 times. doi: 10.1111/j.1540-8167.2005.00342.xBarr, CS. (2013) Comparison of accuracy and diagnostic valid ity of a novel non-invasive electrocardiographic monitoring device with a standard 12-lead ECG recording device. Cited 2 times.Samol, A., Bischoff, K., Luani, B., Pascut, D., Wiemer, M., Kaese, S. Recording of bipolar multichannel ECGs by a smartwatch: Modern ECG diagnostic 100 years after Einthoven (Open Access) (2019) Sensors (Switzerland), 19 (13), art. no. 2894. Cited 26 times. https://www.mdpi.com/1424-8220/19/13/2894/pdf doi: 10.3390/s19132894Bumgarner, J.M., Lambert, C.T., Hussein, A.A., Cantillon, D.J., Baranowski, B., Wolski, K., Lindsay, B.D., (...), Tarakji, K.G. Smartwatch Algorithm for Automated Detection of Atrial Fibrillation (2018) Journal of the American College of Cardiology, 71 (21), pp. 2381-2388. Cited 262 times. www.elsevier.com/locate/jacc doi: 10.1016/j.jacc.2018.03.003Logan, B., Healey, J. Robust detection of atrial fibrillation for a long term telemonitoring system (2005) Computers in Cardiology, 32, art. no. 1588177, pp. 619-622. Cited 78 times. ISBN: 0780393376; 978-078039337-0 doi: 10.1109/CIC.2005.1588177Kirchner, J., Schild, S., Fischer, G. Detection of paroxysmal atrial fibrillation: A computationally efficient algorithm for use in a wearable telemedical system (Open Access) (2017) 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017 - Proceedings, art. no. 7985896, pp. 320-325. Cited 2 times. ISBN: 978-150902983-9 doi: 10.1109/MeMeA.2017.7985896Dash, S., Chon, K.H., Lu, S., Raeder, E.A. Automatic real time detection of atrial fibrillation (2009) Annals of Biomedical Engineering, 37 (9), pp. 1701-1709. Cited 254 times. doi: 10.1007/s10439-009-9740-zKalsi, M., Prakash, N.R. A new algorithm for detection of Atrial Fibrillation (2016) International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, art. no. 7755288, pp. 3177-3182. Cited 7 times. ISBN: 978-146739939-5 doi: 10.1109/ICEEOT.2016.7755288Kikillus, N., Hammer, G., Lentz, N., Stockwald, F., Bolz, A. Three different algorithms for identifying patients suffering from atrial fibrillation during atrial fibrillation free phases of the ECG (2007) Computers in Cardiology, 34, art. no. 4745607, pp. 801-804. Cited 22 times. ISBN: 978-142442533-4 doi: 10.1109/CIC.2007.4745607Ghodrati, A., Murray, B., Marinello, S. RR interval analysis for detection of Atrial Fibrillation in ECG monitors (2008) Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology", art. no. 4649224, pp. 601-604. Cited 35 times. ISBN: 978-142441815-2 doi: 10.1109/iembs.2008.4649224Jiménez-Serrano, S., Yagüe-Mayans, J., Simarro-Mondéjar, E., Calvo, C.J., Castells, F., Millet, J. Atrial fibrillation detection using feedforward neural networks and automatically extracted signal features (2017) Computing in Cardiology, 44, pp. 1-4. Cited 20 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 doi: 10.22489/CinC.2017.341-131Islam, S., Ammour, N., Alajlan, N. Atrial fibrillation detection with multiparametric RR interval feature and machine learning technique (Open Access) (2017) 2017 International Conference on Informatics, Health and Technology, ICIHT 2017, art. no. 7899003. Cited 10 times. ISBN: 978-146738765-1 doi: 10.1109/ICIHT.2017.7899003Gutiérrez-Rivas, R., García, J.J., Marnane, W.P., Hernández, Á. Novel Real-Time Low-Complexity QRS Complex Detector Based on Adaptive Thresholding (Open Access) (2015) IEEE Sensors Journal, 15 (10), art. no. 7138573, pp. 6036-6043. Cited 100 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361 doi: 10.1109/JSEN.2015.2450773Yao, Z., Zhu, Z., Chen, Y. Atrial fibrillation detection by multi-scale convolutional neural networks (2017) 20th International Conference on Information Fusion, Fusion 2017 - Proceedings, art. no. 8009782. Cited 41 times. ISBN: 978-099645270-0 doi: 10.23919/ICIF.2017.8009782Nuryani, N., Harjito, B., Yahya, I., Lestari, A. Atrial fibrillation detection using support vector machine (Open Access) (2015) Proceedings - Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering, ICEVT 2015 and IMECE 2015, art. no. 7496672, pp. 215-218. Cited 9 times. ISBN: 978-146738504-6 doi: 10.1109/ICEVTIMECE.2015.7496672Hernandez, F., Mendez, D., Amado, L., Altuve, M. Atrial Fibrillation Detection in Short Single Lead ECG Recordings Using Wavelet Transform and Artificial Neural Networks (2018) Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2018, pp. 5982-5985. Cited 13 times. doi: 10.1109/EMBC.2018.8513562Xia, Y., Wulan, N., Wang, K., Zhang, H. Atrial fibrillation detection using stationary wavelet transform and deep learning (2017) Computing in Cardiology, 44, pp. 1-4. Cited 15 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 doi: 10.22489/CinC.2017.210-084Shen, M., Zhang, L., Luo, X., Xu, J. Atrial fibrillation detection algorithm based on manual extraction features and automatic extraction features (2020) IOP Conference Series: Earth and Environmental Science, 428 (1), art. no. 012050. Cited 11 times. https://iopscience.iop.org/journal/1755-1315 doi: 10.1088/1755-1315/428/1/012050Andersen, R.S., Peimankar, A., Puthusserypady, S. A deep learning approach for real-time detection of atrial fibrillation (Open Access) (2019) Expert Systems with Applications, 115, pp. 465-473. Cited 227 times. doi: 10.1016/j.eswa.2018.08.011Bashar, S.K., DIng, E., Albuquerque, D., Winter, M., Binici, S., Walkey, A.J., McManus, D.D., (...), Chon, K.H. Atrial Fibrillation Detection in ICU Patients: A Pilot Study on MIMIC III Data∗ (Open Access) (2019) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8856496, pp. 298-301. Cited 10 times. ISBN: 978-153861311-5 doi: 10.1109/EMBC.2019.8856496Mabrouki, R., Khaddoumi, B., Sayadi, M. Atrial Fibrillation detection on electrocardiogram (Open Access) (2016) 2nd International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2016, art. no. 7523112, pp. 268-272. Cited 5 times. ISBN: 978-146738526-8 doi: 10.1109/ATSIP.2016.7523112Zhou, X., Ding, H., Wu, W., Zhang, Y. A real-time Atrial fibrillation detection algorithm based on the instantaneous state of heart rate (2015) PLoS ONE, 10 (9), art. no. 0136544. Cited 62 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0136544&representation=PDF doi: 10.1371/journal.pone.0136544Islam, M.S., Ammour, N., Alajlan, N., Aboalsamh, H. Rhythm-based heartbeat duration normalization for atrial fibrillation detection (2016) Computers in Biology and Medicine, 72, pp. 160-169. Cited 27 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2016.03.015Lee, J., McManus, D., Chon, K. Atrial Fibrillation detection using time-varying coherence function and Shannon Entropy (2011) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 6091160, pp. 4685-4688. Cited 19 times. ISBN: 978-142444121-1 doi: 10.1109/IEMBS.2011.6091160Mohebbi, M., Ghassemian, H. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal (Open Access) (2012) Computer Methods and Programs in Biomedicine, 105 (1), pp. 40-49. Cited 93 times. doi: 10.1016/j.cmpb.2010.07.011Huang, C., Ye, S., Chen, H., Li, D., He, F., Tu, Y. A novel method for detection of the transition between atrial fibrillation and sinus rhythm (Open Access) (2011) IEEE Transactions on Biomedical Engineering, 58 (4), art. no. 5657251, pp. 1113-1119. Cited 142 times. doi: 10.1109/TBME.2010.2096506Yaghouby, F., Ayatollahi, A., Bahramali, R., Yaghouby, M., Alavi, A.H. Towards automatic detection of atrial fibrillation: A hybrid computational approach (2010) Computers in Biology and Medicine, 40 (11-12), pp. 919-930. Cited 45 times. doi: 10.1016/j.compbiomed.2010.10.004Piskorski, J., Guzik, P. Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults (2007) Physiological Measurement, 28 (3), art. no. 005, pp. 287-300. Cited 218 times. https://iopscience.iop.org/journal/0967-3334 doi: 10.1088/0967-3334/28/3/005Park, J., Lee, S., Jeon, M. Atrial fibrillation detection by heart rate variability in Poincare plot (Open Access) (2009) BioMedical Engineering Online, 8, art. no. 38. Cited 137 times. http://www.biomedical-engineering-online.com/content/8/1/38 doi: 10.1186/1475-925X-8-38Lian, J., Wang, L., Muessig, D. A simple method to detect atrial fibrillation using RR intervals (Open Access) (2011) American Journal of Cardiology, 107 (10), pp. 1494-1497. Cited 114 times. doi: 10.1016/j.amjcard.2011.01.028Sarkar, S., Ritscher, D., Mehra, R. A detector for a chronic implantable atrial tachyarrhythmia monitor (2008) IEEE Transactions on Biomedical Engineering, 55 (3), pp. 1219-1224. Cited 174 times. doi: 10.1109/TBME.2007.903707Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., Habetha, J. Detection of Atrial Fibrillation using model-based ECG analysis (Open Access) (2008) Proceedings - International Conference on Pattern Recognition, art. no. 4761755. Cited 85 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000545 ISBN: 978-142442175-6 doi: 10.1109/icpr.2008.4761755Babaeizadeh, S., Gregg, R.E., Helfenbein, E.D., Lindauer, J.M., Zhou, S.H. Improvements in atrial fibrillation detection for real-time monitoring (2009) Journal of Electrocardiology, 42 (6), pp. 522-526. Cited 138 times. doi: 10.1016/j.jelectrocard.2009.06.006Faust, O., Ciaccio, E.J., Acharya, U.R. A review of atrial fibrillation detection methods as a service (2020) International Journal of Environmental Research and Public Health, 17 (9), art. no. 3093. Cited 25 times. https://www.mdpi.com/1660-4601/17/9/3093/pdf doi: 10.3390/ijerph17093093Mei, Z., Gu, X., Chen, H., Chen, W. Automatic atrial fibrillation detection based on heart rate variability and spectral features (2018) IEEE Access, 6, art. no. 8468160, pp. 53566-53575. Cited 30 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2871220Zhao, Z., Sǎrkkǎ, S., Rad, A.B. Spectro-temporal ECG analysis for atrial fibrillation detection (2018) IEEE International Workshop on Machine Learning for Signal Processing, MLSP, 2018-September, art. no. 8517085. Cited 19 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153865477-4 doi: 10.1109/MLSP.2018.8517085Duverney, D., Gaspoz, J., Pichot, V., Roche, F., Brion, R., Antoniadis, A., Barthélémy, J. High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals (2002) PACE - Pacing and Clinical Electrophysiology, Part I 25 (4), pp. 457-462. Cited 54 times. doi: 10.1046/j.1460-9592.2002.00457.xYuan, C., Yan, Y., Zhou, L., Bai, J., Wang, L. Automated atrial fibrillation detection based on deep learning network (Open Access) (2016) 2016 IEEE International Conference on Information and Automation, IEEE ICIA 2016, art. no. 7831994, pp. 1159-1164. Cited 32 times. ISBN: 978-150904102-2 doi: 10.1109/ICInfA.2016.7831994Andersen, R.S., Poulsen, E.S., Puthusserypady, S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine (2017) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8037253, pp. 2039-2042. Cited 25 times. ISBN: 978-150902809-2 doi: 10.1109/EMBC.2017.8037253Petrenas, A., Marozas, V., Sörnmo, L. Low-complexity detection of atrial fibrillation in continuous long-term monitoring (Open Access) (2015) Computers in Biology and Medicine, 65, pp. 184-191. Cited 87 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2015.01.019Linker, D.T. Accurate, Automated Detection of Atrial Fibrillation in Ambulatory Recordings (2016) Cardiovascular Engineering and Technology, 7 (2), pp. 182-189. Cited 35 times. http://www.springerlink.com/content/1869-408x/ doi: 10.1007/s13239-016-0256-zLee, J., Nam, Y., McManus, D.D., Chon, K.H. Time-varying coherence function for atrial fibrillation detection (2013) IEEE Transactions on Biomedical Engineering, 60 (10), art. no. 6518126, pp. 2783-2793. Cited 82 times. doi: 10.1109/TBME.2013.2264721Kruger, G.H., Latchamsetty, R., Langhals, N.B., Yokokawa, M., Chugh, A., Morady, F., Oral, H., (...), Berenfeld, O. Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings (Open Access) (2019) Computers in Biology and Medicine, 104, pp. 310-318. Cited 15 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2018.11.016Annavarapu, A, Kora, P. ECG-based atrial fibrillation detection using different orderings of conjugate symmetric– complex hadamard transform (2016) Int J Cardiovas Acad, 2 (3), pp. 151-154. Cited 15 times.Petrutiu, S., Ng, J., Nijm, G.M., Al-Angari, H., Swiryn, S., Sahakian, A.V. Atrial fibrillation and waveform characterization: A time domain perspective in the surface ECG (Open Access) (2006) IEEE Engineering in Medicine and Biology Magazine, 25 (6), art. no. 14, pp. 24-30. Cited 137 times. doi: 10.1109/EMB-M.2006.250505Sörnmo, L. (2018) Atrial Fibrillation from an Engineering Perspective. Cited 20 times. New York: SpringerLadavich, S., Ghoraani, B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity (2015) Biomedical Signal Processing and Control, 18, pp. 274-281. Cited 113 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2015.01.007Last, T., Nugent, C.D., Owens, F.J. Multi-component based cross correlation beat detection in electrocardiogram analysis (2004) BioMedical Engineering Online, 3, art. no. 26. Cited 50 times. http://www.biomedical-engineering-online.com/content/3/1/26 doi: 10.1186/1475-925X-3-26Dotsinsky, I. Atrial wave detection algorithm for discovery of some rhythm abnormalities (2007) Physiological Measurement, 28 (5), art. no. 012. Cited 20 times. https://iopscience.iop.org/journal/0967-3334 doi: 10.1088/0967-3334/28/5/012Buxton, A.E., Josephson, M.E. The role of P wave duration as a predictor of postoperative atrial arrhythmias (Open Access) (1981) Chest, 80 (1), pp. 68-73. Cited 127 times. doi: 10.1378/chest.80.1.68Andrikopoulos, G.K., Dilaveris, P.E., Richter, D.J., Gialafos, E.J., Synetos, A.G., Gialafos, J.E. Increased variance of P wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation (2000) PACE - Pacing and Clinical Electrophysiology, 23 (7), pp. 1127-1132. Cited 78 times. http://www.blackwellpublishing.com/journals/PACE doi: 10.1111/j.1540-8159.2000.tb00913.xMehta, A., Jain, A.C., Mehta, M.C., Billie, M. Usefulness of left atrial abnormality for predicting left ventricular hypertrophy in the presence of left bundle branch block (2000) American Journal of Cardiology, 85 (3), pp. 354-359. Cited 20 times. doi: 10.1016/S0002-9149(99)00746-8Passman, R., Beshai, J., Pavri, B., Kimmel, S. Predicting post-coronary bypass surgery atrial arrhythmias from the preoperative electrocardiogram (2001) American Heart Journal, 142 (5), pp. 806-810. Cited 41 times. http://www.elsevier.com/inca/publications/store/6/2/3/2/7/2/index.htt doi: 10.1067/mhj.2001.118736Sasikala, P, WahidaBanu, R. Extraction of P wave and T wave in electrocardiogram using wavelet transform (2011) Int J Comput Sci Inf Technol, 2 (1), pp. 489-493. Cited 17 times.Giraldo-Guzmán, J., Contreras-Ortiz, S.H., Lasprilla, G.I.B., Kotas, M. Fetal ECG extraction using independent component analysis by Jade approach (2017) Proceedings of SPIE - The International Society for Optical Engineering, 10572, art. no. 105720V. Cited 4 times. http://spie.org/x1848.xml ISBN: 978-151061633-2 doi: 10.1117/12.2285962Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., Roig, J.M. Principal component analysis in ECG signal processing (2007) Eurasip Journal on Advances in Signal Processing, 2007, art. no. 74580. Cited 281 times. doi: 10.1155/2007/74580Rieta, J.J., Castells, F., Sánchez, C., Zarzoso, V., Millet, J. Atrial activity extraction for atrial fibrillation analysis using blind source separation (2004) IEEE Transactions on Biomedical Engineering, 51 (7), pp. 1176-1186. Cited 230 times. doi: 10.1109/TBME.2004.827272Castells, F., Rieta, J.J., Millet, J., Zarzoso, V. Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias (Open Access) (2005) IEEE Transactions on Biomedical Engineering, 52 (2), pp. 258-267. Cited 135 times. doi: 10.1109/TBME.2004.840473Fischer, R., Klein, G., Widiger, B., Hoy, L., Zywietz, C. Discrimination between atrial flutter and atrial fibrillation by computing a flutter index (2005) Computers in Cardiology, 32, art. no. 1588039, pp. 81-84. Cited 3 times. ISBN: 0780393376; 978-078039337-0 doi: 10.1109/CIC.2005.1588039Hiraki, T., Ikeda, H., Ohga, M., Hamada, T., Kubara, I., Yoshida, T., Ajisaka, H., (...), Imaizumi, T. Frequency- and time-domain analysis of P wave in patients with paroxysmal atrial fibrillation (1998) PACE - Pacing and Clinical Electrophysiology, 21 (1 I), pp. 56-64. Cited 25 times. http://www.blackwellpublishing.com/journals/PACE doi: 10.1111/j.1540-8159.1998.tb01061.xBollmann, A., Sonne, K., Esperer, H.-D., Toepffer, I., Langberg, J.J., Klein, H.U. Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG (Open Access) (1999) Cardiovascular Research, 44 (1), pp. 60-66. Cited 104 times. doi: 10.1016/S0008-6363(99)00156-XBollmann, A., Kanuru, N.K., McTeague, K.K., Walter, P.F., DeLurgio, D.B., Langberg, J.J. Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide (1998) American Journal of Cardiology, 81 (12), pp. 1439-1445. Cited 238 times. doi: 10.1016/S0002-9149(98)00210-0Ródenas, J., García, M., Alcaraz, R., Rieta, J.J. Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms (2015) Entropy, 17 (9), pp. 6179-6199. Cited 48 times. http://www.mdpi.com/1099-4300/17/9/6179/pdf doi: 10.3390/e17096179García, M., Ródenas, J., Alcaraz, R., Rieta, J.J. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation (2016) Computer Methods and Programs in Biomedicine, 131, pp. 157-168. Cited 70 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2016.04.009Stridh, M., Rosenqvist, M. Automatic screening of atrial fibrillation in thumb-ECG recordings (2012) Computing in Cardiology, 39, art. no. 6420363, pp. 193-196. Cited 17 times. ISBN: 978-146732074-0Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., Hindricks, G. P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors (Open Access) (2014) Heart Rhythm, 11 (9), pp. 1575-1583. Cited 93 times. http://www.elsevier.com/inca/publications/store/7/0/2/3/3/3/index.htt doi: 10.1016/j.hrthm.2014.06.006Bruun, I.H., Hissabu, S.M.S., Poulsen, E.S., Puthusserypady, S. Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability (Open Access) (2017) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8037728, pp. 3981-3984. Cited 12 times. ISBN: 978-150902809-2 doi: 10.1109/EMBC.2017.8037728http://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALCRB4903(4)-41650.pdfCRB4903(4)-41650.pdfapplication/pdf312051https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/1/CRB4903%284%29-41650.pdf178ee02dee31a84d07fd325098de514cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTCRB4903(4)-41650.pdf.txtCRB4903(4)-41650.pdf.txtExtracted texttext/plain73136https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/4/CRB4903%284%29-41650.pdf.txtb51f803684407da913fffac786c09af3MD54THUMBNAILCRB4903(4)-41650.pdf.jpgCRB4903(4)-41650.pdf.jpgGenerated Thumbnailimage/jpeg9213https://repositorio.utb.edu.co/bitstream/20.500.12585/12297/5/CRB4903%284%29-41650.pdf.jpg6d660e5dd357f36130f73eae0eda1d1bMD5520.500.12585/12297oai:repositorio.utb.edu.co:20.500.12585/122972023-07-22 00:17:58.93Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |