Composite Likelihood Inference for Multivariate Gaussian Random Fields

In the recent years, there has been a growing interest in proposing covariance models for multivariate Gaussian random fields. Some of these covariance models are very flexible and can capture both the marginal and the cross-spatial dependence of the components of the associated multivariate Gaussia...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8981
Acceso en línea:
https://hdl.handle.net/20.500.12585/8981
Palabra clave:
Cross-covariance
Geostatistics
Large datasets
Computer simulation
Data set
Gaussian method
Geostatistics
Maximum likelihood analysis
Multivariate analysis
Chile
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5d7763da99002f9ac87c7c94cfd00fba
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8981
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Composite Likelihood Inference for Multivariate Gaussian Random Fields
title Composite Likelihood Inference for Multivariate Gaussian Random Fields
spellingShingle Composite Likelihood Inference for Multivariate Gaussian Random Fields
Cross-covariance
Geostatistics
Large datasets
Computer simulation
Data set
Gaussian method
Geostatistics
Maximum likelihood analysis
Multivariate analysis
Chile
title_short Composite Likelihood Inference for Multivariate Gaussian Random Fields
title_full Composite Likelihood Inference for Multivariate Gaussian Random Fields
title_fullStr Composite Likelihood Inference for Multivariate Gaussian Random Fields
title_full_unstemmed Composite Likelihood Inference for Multivariate Gaussian Random Fields
title_sort Composite Likelihood Inference for Multivariate Gaussian Random Fields
dc.subject.keywords.none.fl_str_mv Cross-covariance
Geostatistics
Large datasets
Computer simulation
Data set
Gaussian method
Geostatistics
Maximum likelihood analysis
Multivariate analysis
Chile
topic Cross-covariance
Geostatistics
Large datasets
Computer simulation
Data set
Gaussian method
Geostatistics
Maximum likelihood analysis
Multivariate analysis
Chile
description In the recent years, there has been a growing interest in proposing covariance models for multivariate Gaussian random fields. Some of these covariance models are very flexible and can capture both the marginal and the cross-spatial dependence of the components of the associated multivariate Gaussian random field. However, effective estimation methods for these models are somehow unexplored. Maximum likelihood is certainly a useful tool, but it is impractical in all the circumstances where the number of observations is very large. In this work, we consider two possible approaches based on composite likelihood for multivariate covariance model estimation. We illustrate, through simulation experiments, that our methods offer a good balance between statistical efficiency and computational complexity. Asymptotic properties of the proposed estimators are assessed under increasing domain asymptotics. Finally, we apply the method for the analysis of a bivariate dataset on chlorophyll concentration and sea surface temperature in the Chilean coast. © 2016, International Biometric Society.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:42Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:42Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Agricultural, Biological, and Environmental Statistics; Vol. 21, Núm. 3; pp. 448-469
dc.identifier.issn.none.fl_str_mv 10857117
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8981
dc.identifier.doi.none.fl_str_mv 10.1007/s13253-016-0256-3
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 7102698888
57188537306
54783771000
21934725400
identifier_str_mv Journal of Agricultural, Biological, and Environmental Statistics; Vol. 21, Núm. 3; pp. 448-469
10857117
10.1007/s13253-016-0256-3
Universidad Tecnológica de Bolívar
Repositorio UTB
7102698888
57188537306
54783771000
21934725400
url https://hdl.handle.net/20.500.12585/8981
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978042302&doi=10.1007%2fs13253-016-0256-3&partnerID=40&md5=2b4c4cbf8bdda67553df93ec78feb0e8
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8981/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021687139631104
spelling 2020-03-26T16:32:42Z2020-03-26T16:32:42Z2016Journal of Agricultural, Biological, and Environmental Statistics; Vol. 21, Núm. 3; pp. 448-46910857117https://hdl.handle.net/20.500.12585/898110.1007/s13253-016-0256-3Universidad Tecnológica de BolívarRepositorio UTB7102698888571885373065478377100021934725400In the recent years, there has been a growing interest in proposing covariance models for multivariate Gaussian random fields. Some of these covariance models are very flexible and can capture both the marginal and the cross-spatial dependence of the components of the associated multivariate Gaussian random field. However, effective estimation methods for these models are somehow unexplored. Maximum likelihood is certainly a useful tool, but it is impractical in all the circumstances where the number of observations is very large. In this work, we consider two possible approaches based on composite likelihood for multivariate covariance model estimation. We illustrate, through simulation experiments, that our methods offer a good balance between statistical efficiency and computational complexity. Asymptotic properties of the proposed estimators are assessed under increasing domain asymptotics. Finally, we apply the method for the analysis of a bivariate dataset on chlorophyll concentration and sea surface temperature in the Chilean coast. © 2016, International Biometric Society.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84978042302&doi=10.1007%2fs13253-016-0256-3&partnerID=40&md5=2b4c4cbf8bdda67553df93ec78feb0e8Composite Likelihood Inference for Multivariate Gaussian Random Fieldsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Cross-covarianceGeostatisticsLarge datasetsComputer simulationData setGaussian methodGeostatisticsMaximum likelihood analysisMultivariate analysisChileBevilacqua M.Alegria A.Velandia D.Porcu E.Apanasovich, T., Genton, M., Sun, Y., A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components (2012) Journal of the American Statistical Association, 97, pp. 15-30Bevilacqua, M., Fassò, A., Gaetan, C., Porcu, E., Velandia, D., Covariance tapering for multivariate Gaussian random fields estimation (2016) Statistical Methods & Applications, 25 (1), pp. 21-37Bevilacqua, M., Gaetan, C., Comparing composite likelihood methods based on pairs for spatial Gaussian random fields (2015) Statistics and Computing, 25, pp. 877-892Bevilacqua, M., Gaetan, C., Mateu, J., Porcu, E., Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach (2012) Journal of the American Statistical Association, 107, pp. 268-280Bevilacqua, M., Vallejos, R., Velandia, D., Assessing the significance of the correlation between the components of a bivariate Gaussian random field (2015) Environmetrics, 26, pp. 545-556Boyce, D.G., Lewis, M.R., Worm, B., Global phytoplankton decline over the past century, (2010) Nature. International weekly journal of science, p. 466Castruccio, S., Huser, R., Genton, M.G., High-order composite likelihood inference for max-stable distributions and processes, (2016) Journal of Computational and Graphical StatisticsDaley, D., Porcu, E., Bevilacqua, M., Classes of compactly supported covariance functions for multi- variate random fields (2015) Stoch Environ Res Risk Assess, 29, pp. 1249-1263Davis, R., Yau, C.-Y., Comments on pairwise likelihood in time series models (2011) Statistica Sinica, 21, pp. 255-277Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Talley, L.D., Annual Review of Marine Science (2012) Nature. International weekly journal of science, 4, pp. 11-37Eidsvik, J., Shaby, B., Reich, B., Wheeler, M., Niemi, J., Estimation and prediction in spatial models with block composite likelihoods (2014) Journal of Computational and Graphical Statistics, 29, pp. 295-315Furrer, R., Bachoc, F., and Du, J. (2016), “Asymptotic properties of multivariate tapering for estimation and prediction,” Journal of Multivariate Analysis, In pressFurrer, R., Genton, M.G., Nychka, D., Covariance tapering for interpolation of large spatial datasets (2006) Journal of Computational and Graphical Statistics, 15, pp. 502-523Genton, M.G., Padoan, S., Sang, H., Multivariate max-stable spatial processes (2015) Biometrika, 102, pp. 215-230Genton, M., and Kleiber, W. (2015), “Cross-Covariance Functions for Multivariate Geostatistics,” Statistical Science, in pressGneiting, T., Compactly supported correlation functions (2002) Journal of Multivariate Analysis, 83, pp. 493-508Gneiting, T., Genton, M.G., Guttorp, P., Geostatistical space–time models, stationarity, separability and full symmetry (2007) Statistical Methods for Spatio-Temporal Systems, pp. 151-175. , Finkenstadt B, Held L, Isham V, (eds), Chapman & Hall/CRC, Boca Raton, FLGneiting, T., Kleiber, W., Schlather, M., Matérn Cross-Covariance Functions for Multivariate Random Fields (2010) Journal of the American Statistical Association, 105, pp. 1167-1177Goulard, M., Voltz, M., Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix (1992) Mathematical Geology, 24, pp. 269-286Heagerty, P., Lumley, T., Window subsampling of estimating functions with application to regression models (2000) Journal of the American Statistical Association, 95, pp. 197-211Joe, H., Lee, Y., On weighting of bivariate margins in pairwise likelihood (2009) Journal of Multivariate Analysis, 100, pp. 670-685Kaufman, C.G., Schervish, M.J., Nychka, D.W., Covariance tapering for likelihood-based estimation in large spatial data sets (2008) Journal of the American Statistical Association, 103, pp. 1545-1555Lee, A., Yau, C., Giles, M., Doucet, A., Holmes, C., On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods (2010) Journal of Computational and Graphical Statistics, 19, pp. 769-789Lee, Y., Lahiri, S., Least squares variogram fitting by spatial subsampling (2002) Journal of the Royal Statistical Society B, 64, pp. 837-854Li, B., Zhang, H., An approach to modeling asymmetric multivariate spatial covariance structures (2011) Journal of Multivariate Analysis, 102, pp. 1445-1453Lindsay, B., Composite likelihood methods (1988) Contemporary Mathematics, 80, pp. 221-239Padoan, S.A., Bevilacqua, M., Analysis of Random Fields Using CompRandFld (2015) Journal of Statistical Software, 63, pp. 1-27Pelletier, B., Dutilleul, P., Larocque, G., Fyles, J., Fitting the linear model of coregionalization by generalized least squares (2004) Mathematical Geology, 36 (3), pp. 323-343Porcu, E., Daley, D., Buhmann, M., Bevilacqua, M., Radial basis functions with compact support for multivariate geostatistics (2013) Stochastic Environmental Research and Risk Assessment, 27, pp. 909-922Shaby, B., Ruppert, D., Tapered covariance: Bayesian estimation and asymptotics (2012) Journal of Computational and Graphical Statistics, 21, pp. 433-452Stein, M., Space–time covariance functions (2005) Journal of the American Statistical Association, 100, pp. 310-321Stein, M., Chi, Z., Welty, L., Approximating likelihoods for large spatial data sets (2004) Journal of the Royal Statistical Society B, 66, pp. 275-296Suchard, M., Wang, Q., anf, J., Frelinger, C.C., Cron, A., West, M., Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures (2010) Journal of Computational and Graphical Statistics, 19, pp. 419-438Varin, C., Reid, N., Firth, D., An overview of composite likelihood methods (2011) Statistica Sinica, 21, pp. 5-42Varin, C., Vidoni, P., A note on composite likelihood inference and model selection (2005) Biometrika, 52, pp. 519-528Wackernagel, H., (2003) Multivariate Geostatistics: An Introduction with Applications, , Springer, New YorkWood, S., (2006) Generalized Additive Models: An Introduction with R, , Chapman and Hall CRC, Boca RatonZhang, H., Maximum-likelihood estimation for multivariate spatial linear coregionalization models (2007) Environmetrics, 18, pp. 125-139http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8981/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8981oai:repositorio.utb.edu.co:20.500.12585/89812021-02-02 15:17:43.828Repositorio Institucional UTBrepositorioutb@utb.edu.co