Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events

Air valves operate as protection devices in pipelines during drainage processes in order to mitigate vacuum pressures and control the transient flows. Currently, different authors have proposed one-dimensional models to predict the behaviour of orifices during filling and draining events, which offe...

Full description

Autores:
Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Espinoza-Román, Héctor G.
Besharat, Mohsen
Fuertes-Miquel, Vicente S
Ramos, Helena M
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12276
Acceso en línea:
https://hdl.handle.net/20.500.12585/12276
Palabra clave:
Air inflow
Orifice
Three-dimensional model
Vacuum pressure
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5b51f8bd7816238489341c858553691b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12276
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
title Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
spellingShingle Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
Air inflow
Orifice
Three-dimensional model
Vacuum pressure
title_short Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
title_full Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
title_fullStr Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
title_full_unstemmed Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
title_sort Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
dc.creator.fl_str_mv Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Espinoza-Román, Héctor G.
Besharat, Mohsen
Fuertes-Miquel, Vicente S
Ramos, Helena M
dc.contributor.author.none.fl_str_mv Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Espinoza-Román, Héctor G.
Besharat, Mohsen
Fuertes-Miquel, Vicente S
Ramos, Helena M
dc.subject.keywords.spa.fl_str_mv Air inflow
Orifice
Three-dimensional model
Vacuum pressure
topic Air inflow
Orifice
Three-dimensional model
Vacuum pressure
description Air valves operate as protection devices in pipelines during drainage processes in order to mitigate vacuum pressures and control the transient flows. Currently, different authors have proposed one-dimensional models to predict the behaviour of orifices during filling and draining events, which offer good numerical results. However, the three-dimensional dynamic behaviour of air-admission orifices during drainage processes has not been studied in depth in the literature. In this research, the effects of air inflow on an orifice installed in a single pipe during drainage events are analysed using a three-dimensional computational fluid dynamics model by testing orifices with diameters of 1.5 and 3.0 mm. This model was validated with different experimental measurements associated to the vacuum pressure, obtaining good fits. The three-dimensional model predicts additional information associated to the aerodynamic effects that occur during the air-admission processes, which is studied. Subsonic flows are observed in different orifices with Mach numbers between 0.18 and 0.30. In addition, it is shown that the larger-diameter orifice ensures a more effective airflow control compared to the smaller-diameter orifice
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-07
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:42:47Z
dc.date.available.none.fl_str_mv 2023-07-21T15:42:47Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. https://doi.org/10.3390/su142114600
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12276
dc.identifier.doi.none.fl_str_mv 10.3390/su142114600
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. https://doi.org/10.3390/su142114600
10.3390/su142114600
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12276
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Sustainability (Switzerland) - Vol. 14 No. 21 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/1/sustainability-14-14600.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/4/sustainability-14-14600.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/5/sustainability-14-14600.pdf.jpg
bitstream.checksum.fl_str_mv e1e942b6b7f1e24671c4bb6ec2a0a0d4
e20ad307a1c5f3f25af9304a7a7c86b6
4460e5956bc1d1639be9ae6146a50347
8b63be7e3960c056fa5fb7a4df192850
fbf136b6352f4bf4aaceb13d477bfee7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021656448860160
spelling Paternina-Verona, Duban A.5d7644af-e173-4934-a456-2d7a35e68c77Coronado-Hernández, Oscar E.f7a2fa8b-0bf4-4814-84e5-164c0b4b3c36Espinoza-Román, Héctor G.de01a4a0-303c-4f6b-a41b-65dda1905d78Besharat, Mohsen9bc60135-8166-40cd-9250-625e81504c7dFuertes-Miquel, Vicente Sf682be4f-81f2-4a2c-b84a-347dbfe6756fRamos, Helena M55b0330e-7043-4bb2-8745-c564ce43175a2023-07-21T15:42:47Z2023-07-21T15:42:47Z2022-11-072023-07Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. https://doi.org/10.3390/su142114600https://hdl.handle.net/20.500.12585/1227610.3390/su142114600Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAir valves operate as protection devices in pipelines during drainage processes in order to mitigate vacuum pressures and control the transient flows. Currently, different authors have proposed one-dimensional models to predict the behaviour of orifices during filling and draining events, which offer good numerical results. However, the three-dimensional dynamic behaviour of air-admission orifices during drainage processes has not been studied in depth in the literature. In this research, the effects of air inflow on an orifice installed in a single pipe during drainage events are analysed using a three-dimensional computational fluid dynamics model by testing orifices with diameters of 1.5 and 3.0 mm. This model was validated with different experimental measurements associated to the vacuum pressure, obtaining good fits. The three-dimensional model predicts additional information associated to the aerodynamic effects that occur during the air-admission processes, which is studied. Subsonic flows are observed in different orifices with Mach numbers between 0.18 and 0.30. In addition, it is shown that the larger-diameter orifice ensures a more effective airflow control compared to the smaller-diameter orifice14 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sustainability (Switzerland) - Vol. 14 No. 21 (2022)Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage eventsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Air inflowOrificeThree-dimensional modelVacuum pressureCartagena de IndiasMartin, C.S. Entrapped air in pipelines Proceedings of the Second International Conference on Pressure Surges. Cited 148 times. London, UK, 22–24 September 1976Vasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)Chosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898(2016) Air Release, Air/Vacuum Valves and Combination Air Valves (M51). Cited 4 times. American Water Works Association, Denver, CO, USAFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188Balacco, G., Apollonio, C., Piccinni, A.F. Experimental analysis of air valve behaviour during hydraulic transients (2015) Journal of Applied Water Engineering and Research, 3 (1), pp. 3-11. Cited 25 times. tandfonline.com/toc/tjaw20/current doi: 10.1080/23249676.2015.1032374Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F. Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water (Switzerland), 8 (1), art. no. 25. Cited 36 times. http://www.mdpi.com/2073-4441/8/1/25/pdf doi: 10.3390/w8010025Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (Open Access) (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 35 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098Romero, G., Fuertes-Miquel, V.S., Coronado-Hernández, Ó.E., Ponz-Carcelén, R., Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations (2020) Urban Water Journal, 17 (6), pp. 568-575. Cited 7 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1800762Martin, C., Lee, N.H. Rapid expulsion of entrapped air through an orifice (2000) BHR Group Conference Series Publication, 39, pp. 125-132. Cited 28 times. Professional Engineering Publishing, Bury St. Edmunds, UKZhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)Zhou, F., Hicks, F., Steffler, P. Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure (2004) Canadian Journal of Civil Engineering, 31 (1), pp. 86-94. Cited 49 times. doi: 10.1139/l03-077De Martino, G., Fontana, N., Giugni, M. Transient flow caused by air expulsion through an orifice (2008) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399. Cited 45 times. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1395)Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (Open Access) (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis (2019) Water (Switzerland), 11 (9), art. no. 1814. Cited 17 times. https://res.mdpi.com/d_attachment/water/water-11-01814/article_deploy/water-11-01814.pdf doi: 10.3390/w11091814Zhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (Open Access) (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465García-Todolí, S., Iglesias-Rey, P.L., Mora-Meliá, D., Martínez-Solano, F.J., Fuertes-Miquel, V.S. Computational determination of air valves capacity using CFD techniques (Open Access) (2018) Water (Switzerland), 10 (10), art. no. 1433. Cited 13 times. https://www.mdpi.com/2073-4441/10/10/1433/pdf doi: 10.3390/w10101433Aguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (Open Access) (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104Aguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (Open Access) (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888Paternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929Oyinloye, T.M., Yoon, W.B. Application of computational fluid dynamics (Cfd) simulation for the effective design of food 3d printing (a review) (Open Access) (2021) Processes, 9 (11), art. no. 1867. Cited 14 times. https://www.mdpi.com/2227-9717/9/11/1867/pdf doi: 10.3390/pr9111867Sharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nguyen, X.P., Nižetić, S., Huang, Z., (...), Li, C. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas (Open Access) (2023) International Journal of Hydrogen Energy, 48 (18), pp. 6738-6760. Cited 35 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.04.152Said, Z., Rahman, S., Sharma, P., Amine Hachicha, A., Issa, S. Performance characterization of a solar-powered shell and tube heat exchanger utilizing MWCNTs/water-based nanofluids: An experimental, numerical, and artificial intelligence approach (2022) Applied Thermal Engineering, 212, art. no. 118633. Cited 27 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2022.118633Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (Open Access) (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819Hurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (Open Access) (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526Greenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. CFD Direct Ltd., Reading, UKMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15770 times. doi: 10.2514/3.12149Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (Open Access) (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 682 times. doi: 10.1080/10618560902773387Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M. Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702. Cited 30 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1310-1Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 49 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491Oberkampf, W.L., Trucano, T.G. Verification and validation in computational fluid dynamics (Open Access) (2002) Progress in Aerospace Sciences, 38 (3), pp. 209-272. Cited 819 times. doi: 10.1016/S0376-0421(02)00005-2http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALsustainability-14-14600.pdfsustainability-14-14600.pdfapplication/pdf8635866https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/1/sustainability-14-14600.pdfe1e942b6b7f1e24671c4bb6ec2a0a0d4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTsustainability-14-14600.pdf.txtsustainability-14-14600.pdf.txtExtracted texttext/plain41519https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/4/sustainability-14-14600.pdf.txt8b63be7e3960c056fa5fb7a4df192850MD54THUMBNAILsustainability-14-14600.pdf.jpgsustainability-14-14600.pdf.jpgGenerated Thumbnailimage/jpeg8191https://repositorio.utb.edu.co/bitstream/20.500.12585/12276/5/sustainability-14-14600.pdf.jpgfbf136b6352f4bf4aaceb13d477bfee7MD5520.500.12585/12276oai:repositorio.utb.edu.co:20.500.12585/122762023-07-22 00:17:52.213Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=