Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry

A theoretical study of the ciprofloxacin interactions with glucuronic acid, arabinose, glucosamine, and rhamnose is presented. The most stable complexes were obtained through genetic algorithms starting from the neutral and zwitterion species of ciprofloxacin. The energy at the semiempirical level P...

Full description

Autores:
Coba-Jiménez, Ludis
Guerra, Mayamarú
Maza, Julio
Deluque-Gómez, Julio
Cubillán, Néstor
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12201
Acceso en línea:
https://hdl.handle.net/20.500.12585/12201
Palabra clave:
Molecular Dynamics;
Carbohydrate Conformation;
Cellobiose
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5b17822e8f21a8fc78cc7fd797c1f5bf
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12201
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
dc.title.alternative.spa.fl_str_mv Maza,
title Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
spellingShingle Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
Molecular Dynamics;
Carbohydrate Conformation;
Cellobiose
LEMB
title_short Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
title_full Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
title_fullStr Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
title_full_unstemmed Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
title_sort Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
dc.creator.fl_str_mv Coba-Jiménez, Ludis
Guerra, Mayamarú
Maza, Julio
Deluque-Gómez, Julio
Cubillán, Néstor
dc.contributor.author.none.fl_str_mv Coba-Jiménez, Ludis
Guerra, Mayamarú
Maza, Julio
Deluque-Gómez, Julio
Cubillán, Néstor
dc.subject.keywords.spa.fl_str_mv Molecular Dynamics;
Carbohydrate Conformation;
Cellobiose
topic Molecular Dynamics;
Carbohydrate Conformation;
Cellobiose
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description A theoretical study of the ciprofloxacin interactions with glucuronic acid, arabinose, glucosamine, and rhamnose is presented. The most stable complexes were obtained through genetic algorithms starting from the neutral and zwitterion species of ciprofloxacin. The energy at the semiempirical level PM7 of the optimal structures of the complexes was the genetic algorithm‘s fitness function. The resulting complexes’ geometry was optimized at M062X−D3/6-311++G** level of theory, and non-covalent interactions were assessed through the reduced density gradient and quantum theory of atoms in molecules. The results show that the zwitterion species of ciprofloxacin favorably complex carbohydrates and can induce proton exchange between them. The molecular complexes from proton exchange are the most stable, followed by the complexes formed by the contact of the zwitterion species and the carbohydrate. The complexes formed by both neutral species were the least stable. The medium strength and strong (assisted by charge) hydrogen bonds, the XH⋅⋅⋅π and lone-pair⋅⋅π interactions, were mainly present in the complexes. Proton exchange processes strengthen the interactions mentioned above. © 2022 Wiley-VCH GmbH
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:19:59Z
dc.date.available.none.fl_str_mv 2023-07-19T21:19:59Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Coba‐Jiménez, L., Maza, J., Guerra, M., Deluque‐Gómez, J., & Cubillán, N. (2022). Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect, 7(2), e202103836.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12201
dc.identifier.doi.none.fl_str_mv 10.1002/slct.202103836
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Coba‐Jiménez, L., Maza, J., Guerra, M., Deluque‐Gómez, J., & Cubillán, N. (2022). Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect, 7(2), e202103836.
10.1002/slct.202103836
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12201
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv ChemistrySelect
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/1/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/4/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/5/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf.jpg
bitstream.checksum.fl_str_mv 0a9ef82be3f8defaac58c35b69742803
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
b5b71aec90136762729fe276a9a6cf41
0d499c1aa33ed05aaff9c4ef84c121c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021610563174400
spelling Coba-Jiménez, Ludisa74218d9-e5bf-4533-97c1-fa33ccf7476eGuerra, Mayamarú5af72308-bd11-495a-86d4-0817f8961b6cMaza, Julio599ccf29-8723-4821-be7a-79f78c0a9c19Deluque-Gómez, Julio3fad6b64-ebe6-41cd-b378-12e209a35d76Cubillán, Néstor81ec06c5-9433-4b0c-9e60-ef40644183c82023-07-19T21:19:59Z2023-07-19T21:19:59Z20222023Coba‐Jiménez, L., Maza, J., Guerra, M., Deluque‐Gómez, J., & Cubillán, N. (2022). Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect, 7(2), e202103836.https://hdl.handle.net/20.500.12585/1220110.1002/slct.202103836Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA theoretical study of the ciprofloxacin interactions with glucuronic acid, arabinose, glucosamine, and rhamnose is presented. The most stable complexes were obtained through genetic algorithms starting from the neutral and zwitterion species of ciprofloxacin. The energy at the semiempirical level PM7 of the optimal structures of the complexes was the genetic algorithm‘s fitness function. The resulting complexes’ geometry was optimized at M062X−D3/6-311++G** level of theory, and non-covalent interactions were assessed through the reduced density gradient and quantum theory of atoms in molecules. The results show that the zwitterion species of ciprofloxacin favorably complex carbohydrates and can induce proton exchange between them. The molecular complexes from proton exchange are the most stable, followed by the complexes formed by the contact of the zwitterion species and the carbohydrate. The complexes formed by both neutral species were the least stable. The medium strength and strong (assisted by charge) hydrogen bonds, the XH⋅⋅⋅π and lone-pair⋅⋅π interactions, were mainly present in the complexes. Proton exchange processes strengthen the interactions mentioned above. © 2022 Wiley-VCH GmbHapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ChemistrySelectInteraction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum ChemistryMaza,info:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Molecular Dynamics;Carbohydrate Conformation;CellobioseLEMBCartagena de IndiasUnemo, M., Golparian, D., Eyre, D.W. Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea (2019) Methods in Molecular Biology, 1997, pp. 37-58. Cited 50 times. http://www.springer.com/series/7651 doi: 10.1007/978-1-4939-9496-0_3Bergan, T., Dalhoff, A., Rohwedder, R. Pharmacokinetics of ciprofloxacin (1988) Infection, 16 (1 Supplement), pp. S3-S13. Cited 71 times. doi: 10.1007/BF01650500Sarafraz, M., Ali, S., Sadani, M., Heidarinejad, Z., Bay, A., Fakhri, Y., Mousavi Khaneghah, A. A global systematic, review-meta analysis and ecological risk assessment of ciprofloxacin in river water (2020) International Journal of Environmental Analytical Chemistry, pp. 1-15. Cited 9 times. www.tandf.co.uk/journals/titles/03067319.asp doi: 10.1080/03067319.2020.1791330Ajibola, A.S., Amoniyan, O.A., Ekoja, F.O., Ajibola, F.O. QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants (2021) Archives of Environmental Contamination and Toxicology, 80 (2), pp. 389-401. Cited 14 times. link.springer.de/link/service/journals/00244/index.htm doi: 10.1007/s00244-020-00789-wWang, K., Gao, D., Xu, J., Cai, L., Cheng, J., Yu, Z., Hu, Z., (...), Yu, J. Interaction of ciprofloxacin with the activated sludge of the sewage treatment plant (Open Access) (2018) Environmental Science and Pollution Research, 25 (35), pp. 35064-35073. Cited 8 times. http://www.springerlink.com/content/0944-1344 doi: 10.1007/s11356-018-3413-0Xie, P., Chen, C., Zhang, C., Su, G., Ren, N., Ho, S.-H. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae (2020) Water Research, 172, art. no. 115475. Cited 124 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2020.115475Yu, J.-H., Lee, B., Jeong, D., Jung, S. Solubility and bioavailability enhancement of ciprofloxacin by induced oval-shaped mono-6-deoxy-6-aminoethylamino-β-cyclodextrin (2017) Carbohydrate Polymers, 163, pp. 118-128. Cited 30 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/405871/description#description doi: 10.1016/j.carbpol.2017.01.073Arafa, M.G., Mousa, H.A., Afifi, N.N. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection (Open Access) (2020) Drug Delivery, 27 (1), pp. 26-39. Cited 76 times. https://www.tandfonline.com/loi/idrd20 doi: 10.1080/10717544.2019.1701140Li, T., Guo, R., Zong, Q., Ling, G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin (2022) Carbohydrate Polymers, 276, art. no. 118644. Cited 28 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/405871/description#description doi: 10.1016/j.carbpol.2021.118644Aytac, Z., Ipek, S., Erol, I., Durgun, E., Uyar, T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex (2019) Colloids and Surfaces B: Biointerfaces, 178, pp. 129-136. Cited 67 times. www.elsevier.com/locate/colsurfb doi: 10.1016/j.colsurfb.2019.02.059Laplaza, R., Peccati, F., A. Boto, R., Quan, C., Carbone, A., Piquemal, J.-P., Maday, Y., (...), Contreras-García, J. NCIPLOT and the analysis of noncovalent interactions using the reduced density gradient (Open Access) (2021) Wiley Interdisciplinary Reviews: Computational Molecular Science, 11 (2), art. no. e1497. Cited 40 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1759-0884Noresson, A.-L., Aurelius, O., Öberg, C.T., Engström, O., Sundin, A.P., Håkansson, M., Stenström, O., (...), Nilsson, U.J. Designing interactions by control of protein-ligand complex conformation: Tuning arginine-arene interaction geometry for enhanced electrostatic protein-ligand interactions (2018) Chemical Science, 9 (4), pp. 1014-1021. Cited 14 times. http://pubs.rsc.org/en/journals/journal/sc doi: 10.1039/c7sc04749eOnuchic, J.N., Wolynes, P.G. Theory of protein folding (2004) Current Opinion in Structural Biology, 14 (1), pp. 70-75. Cited 1006 times. http://www.elsevier.com/locate/sbi doi: 10.1016/j.sbi.2004.01.009Veclani, D., Melchior, A. Adsorption of ciprofloxacin on carbon nanotubes: Insights from molecular dynamics simulations (2020) Journal of Molecular Liquids, 298, art. no. 111977. Cited 41 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2019.111977Cheng, D., Feng, Y., Liu, Y., Li, J., Xue, J., Li, Z. Quantitative models for predicting adsorption of oxytetracycline, ciprofloxacin and sulfamerazine to swine manures with contrasting properties (2018) Science of the Total Environment, 634, pp. 1148-1156. Cited 30 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2018.04.114Jenkins, S., Maza, J.R., Xu, T., Jiajun, D., Kirk, S.R. Biphenyl: A stress tensor and vector-based perspective explored within the quantum theory of atoms in molecules (2015) International Journal of Quantum Chemistry, 115 (23), pp. 1678-1690. Cited 40 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-461X doi: 10.1002/qua.25006Silvi, B., Ratajczak, H. Hydrogen bonding and delocalization in the ELF analysis approach (2016) Physical Chemistry Chemical Physics, 18 (39), pp. 27442-27449. Cited 22 times. http://www.rsc.org/Publishing/Journals/CP/index.asp doi: 10.1039/c6cp05400eMatta, C.F., Castillo, N., Boyd, R.J. Extended weak bonding interactions in DNA: π-stacking (base-base), base-backbone, and backbone-backbone interactions (2006) Journal of Physical Chemistry B, 110 (1), pp. 563-578. Cited 218 times. http://pubs.acs.org/journal/jpcbfk doi: 10.1021/jp054986gDey, D., Chopra, D. Occurrence of 3D isostructurality in fluorinated phenyl benzamidines (2017) CrystEngComm, 19 (1), pp. 47-63. Cited 14 times. http://www.rsc.org/publishing/journals/CE/article.asp?type=CurrentIssue doi: 10.1039/C6CE01924BMorales-Toyo, M., Kansız, S., Dege, N., Glidewell, C., Fuenmayor-Zafra, A., Cubillán, N. Polymorphs of 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid (Diclofenac): Differences from crystallography, Hirshfeld surface, QTAIM and NCIPlots (2021) Chemical Physics, 544, art. no. 111119. Cited 4 times. http://www.journals.elsevier.com/chemical-physics/ doi: 10.1016/j.chemphys.2021.111119Alonso, M., Woller, T., Martín-Martínez, F.J., Contreras-García, J., Geerlings, P., De Proft, F. Understanding the fundamental role of dispersion interactions in shaping carbon-based materials (Open Access) (2014) Chemistry - A European Journal, 20 (17), pp. 4931-4941. Cited 101 times. www.interscience.wiley.com doi: 10.1002/chem.201400107Kozmon, S., Matuška, R., Spiwok, V., Koča, J. Dispersion interactions of carbohydrates with condensate aromatic moieties: Theoretical study on the CH-π interaction additive properties (Open Access) (2011) Physical Chemistry Chemical Physics, 13 (31), pp. 14215-14222. Cited 30 times. doi: 10.1039/c1cp21071hJiménez-Moreno, E., Jiménez-Osés, G., Gómez, A.M., Santana, A.G., Corzana, F., Bastida, A., Jiménez-Barbero, J., (...), Asensio, J.L. A thorough experimental study of CH/π interactions in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes (2015) Chemical Science, 6 (11), pp. 6076-6085. Cited 44 times. http://pubs.rsc.org/en/Journals/JournalIssues/SC doi: 10.1039/c5sc02108aNovotný, J., Bazzi, S., Marek, R., Kozelka, J. Lone-pair-π interactions: Analysis of the physical origin and biological implications (2016) Physical Chemistry Chemical Physics, 18 (28), pp. 19472-19481. Cited 57 times. http://www.rsc.org/Publishing/Journals/CP/index.asp doi: 10.1039/c6cp01524gRodrigues-Oliveira, A.F., Batista, P.R., Ducati, L.C., Correra, T.C. Analyzing the N–H+…π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO (Open Access) (2020) Theoretical Chemistry Accounts, 139 (8), art. no. 130. Cited 6 times. http://link.springer-ny.com/link/service/journals/00214/index.htm doi: 10.1007/s00214-020-02643-7Contreras-García, J., Yang, W., Johnson, E.R. Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions (Open Access) (2011) Journal of Physical Chemistry A, 115 (45), pp. 12983-12990. Cited 308 times. doi: 10.1021/jp204278kRozas, I., Alkorta, I., Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors (Open Access) (2000) Journal of the American Chemical Society, 122 (45), pp. 11154-11161. Cited 1240 times. doi: 10.1021/ja0017864Pakiari, A.H., Eskandari, K. The chemical nature of very strong hydrogen bonds in some categories of compounds (2006) Journal of Molecular Structure: THEOCHEM, 759 (1-3), pp. 51-60. Cited 118 times. doi: 10.1016/j.theochem.2005.10.040Cramariuc, O., Rog, T., Javanainen, M., Monticelli, L., Polishchuk, A.V., Vattulainen, I. Mechanism for translocation of fluoroquinolones across lipid membranes (2012) Biochimica et Biophysica Acta - Biomembranes, 1818 (11), pp. 2563-2571. Cited 71 times. doi: 10.1016/j.bbamem.2012.05.027http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdfScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdfapplication/pdf159500https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/1/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf0a9ef82be3f8defaac58c35b69742803MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdf.txtScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdf.txtExtracted texttext/plain2001https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/4/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf.txtb5b71aec90136762729fe276a9a6cf41MD54THUMBNAILScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdf.jpgScopus - Document details - Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose_ Insights from Genetic Algorithm and Quantum Chemistry.pdf.jpgGenerated Thumbnailimage/jpeg5602https://repositorio.utb.edu.co/bitstream/20.500.12585/12201/5/Scopus%20-%20Document%20details%20-%20Interaction%20of%20Ciprofloxacin%20with%20Arabinose%2c%20Glucosamine%2c%20Glucuronic%20Acid%20and%20Rhamnose_%20Insights%20from%20Genetic%20Algorithm%20and%20Quantum%20Chemistry.pdf.jpg0d499c1aa33ed05aaff9c4ef84c121c2MD5520.500.12585/12201oai:repositorio.utb.edu.co:20.500.12585/122012023-07-20 00:18:16.433Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=