Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis

We use multifractal detrented fluctuation analysis (MFDFA) to investigate the relationship between magnetic rigidity or ”cutoff rigidity” and the variability and multifractal behavior in the time series of the cosmic ray flux on Earth, which is detected by neutron monitors on the Earth's surfac...

Full description

Autores:
Sierra-Porta, D.
Domínguez-Monterroza, Andy-Rafael
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12370
Acceso en línea:
https://hdl.handle.net/20.500.12585/12370
Palabra clave:
Detrended Fluctuation Analyse (DFA);
Cross-Correlation;
Hurst Exponent
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5ae788cdd7281b02e60578dc78e7dea1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12370
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
title Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
spellingShingle Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
Detrended Fluctuation Analyse (DFA);
Cross-Correlation;
Hurst Exponent
LEMB
title_short Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
title_full Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
title_fullStr Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
title_full_unstemmed Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
title_sort Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
dc.creator.fl_str_mv Sierra-Porta, D.
Domínguez-Monterroza, Andy-Rafael
dc.contributor.author.none.fl_str_mv Sierra-Porta, D.
Domínguez-Monterroza, Andy-Rafael
dc.subject.keywords.spa.fl_str_mv Detrended Fluctuation Analyse (DFA);
Cross-Correlation;
Hurst Exponent
topic Detrended Fluctuation Analyse (DFA);
Cross-Correlation;
Hurst Exponent
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description We use multifractal detrented fluctuation analysis (MFDFA) to investigate the relationship between magnetic rigidity or ”cutoff rigidity” and the variability and multifractal behavior in the time series of the cosmic ray flux on Earth, which is detected by neutron monitors on the Earth's surface. Because the cutoff rigidity depends strongly on the geographical latitude of the detectors, not all detectors produce equal cosmic ray counts. Our results indicate that there is some bias in the chaotic nature of the cosmic ray series associated with the latitude of the monitoring stations. We obtain an important relationship between the cutoff rigidity (R) for different behaviors and the Hurst exponent of the series corresponding to the counts at the neutron monitor stations. In particular, an inverse relationship is observed with higher rigidity corresponding to a lower Hurst exponent (H(q=a)=maR+Ba). In particular, for q=−10, considering all time series, the correlation coefficient is approximately 0.80, whereas the R-squared is 0.638, and the coefficients of the linear regression for this case are m=−0.0425±0.006 and b=0.8703±0.025. © 2022 Elsevier B.V.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:46:47Z
dc.date.available.none.fl_str_mv 2023-07-21T20:46:47Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Sierra-Porta, D., & Domínguez-Monterroza, A. R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607, 128159.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12370
dc.identifier.doi.none.fl_str_mv 10.1016/j.physa.2022.128159
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Sierra-Porta, D., & Domínguez-Monterroza, A. R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607, 128159.
10.1016/j.physa.2022.128159
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12370
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Physica A: Statistical Mechanics and its Applications
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/1/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/4/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/5/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdf.jpg
bitstream.checksum.fl_str_mv e20ad307a1c5f3f25af9304a7a7c86b6
c9a97e2bb90713e5a8cd22d9611708c2
4460e5956bc1d1639be9ae6146a50347
ad78b55279ad35ee6a065347d23c6ea0
4ac861bd8556bef03fc8f43f294b9751
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021795350577152
spelling Sierra-Porta, D.b9d14a2f-3fbb-48ab-b147-c7ac70949db3Domínguez-Monterroza, Andy-Rafael40857155-187a-4eca-b60d-3ea1f4f55ef42023-07-21T20:46:47Z2023-07-21T20:46:47Z20222023Sierra-Porta, D., & Domínguez-Monterroza, A. R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607, 128159.https://hdl.handle.net/20.500.12585/1237010.1016/j.physa.2022.128159Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWe use multifractal detrented fluctuation analysis (MFDFA) to investigate the relationship between magnetic rigidity or ”cutoff rigidity” and the variability and multifractal behavior in the time series of the cosmic ray flux on Earth, which is detected by neutron monitors on the Earth's surface. Because the cutoff rigidity depends strongly on the geographical latitude of the detectors, not all detectors produce equal cosmic ray counts. Our results indicate that there is some bias in the chaotic nature of the cosmic ray series associated with the latitude of the monitoring stations. We obtain an important relationship between the cutoff rigidity (R) for different behaviors and the Hurst exponent of the series corresponding to the counts at the neutron monitor stations. In particular, an inverse relationship is observed with higher rigidity corresponding to a lower Hurst exponent (H(q=a)=maR+Ba). In particular, for q=−10, considering all time series, the correlation coefficient is approximately 0.80, whereas the R-squared is 0.638, and the coefficients of the linear regression for this case are m=−0.0425±0.006 and b=0.8703±0.025. © 2022 Elsevier B.V.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Physica A: Statistical Mechanics and its ApplicationsLinking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Detrended Fluctuation Analyse (DFA);Cross-Correlation;Hurst ExponentLEMBCartagena de IndiasVan Allen, J.A. On the modulation of galactic cosmic ray intensity during solar activity cycles 19,20,21, 22 and early 23 (2000) Geophysical Research Letters, 27 (16), pp. 2453-2456. Cited 51 times. doi: 10.1029/2000GL003792Tomassetti, N., Orcinha, M., Barão, F., Bertucci, B. Evidence for a time lag in solar modulation of galactic cosmic rays (2017) Astrophysical Journal Letters, 849 (2), art. no. L32. Cited 54 times. www.iop.org/EJ/journal/apjl doi: 10.3847/2041-8213/aa9373Singh, M., Singh, Y.P., Badruddin Solar modulation of galactic cosmic rays during the last five solar cycles (2008) Journal of Atmospheric and Solar-Terrestrial Physics, 70 (1), pp. 169-183. Cited 25 times. doi: 10.1016/j.jastp.2007.10.001Iskra, K., Siluszyk, M., Alania, M., Wozniak, W. Experimental Investigation of the Delay Time in Galactic Cosmic Ray Flux in Different Epochs of Solar Magnetic Cycles: 1959 – 2014 (Open Access) (2019) Solar Physics, 294 (9), art. no. 115. Cited 15 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-019-1509-4Lockwood, J.A. Forbush decreases in the cosmic radiation (Open Access) (1971) Space Science Reviews, 12 (5), pp. 658-715. Cited 235 times. doi: 10.1007/BF00173346Belov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., Yanke, V.G. What determines the magnetude of forbush decreases? (2001) Advances in Space Research, 27 (3), pp. 625-630. Cited 90 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/S0273-1177(01)00095-3Wawrzynczak, A., Alania, M.V. Modeling and data analysis of a Forbush decrease (2010) Advances in Space Research, 45 (5), pp. 622-631. Cited 56 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2009.09.005Bourdarie, S., Xapsos, M. The near-Earth space radiation environment (2008) IEEE Transactions on Nuclear Science, 55 (4), art. no. 4636949, pp. 1810-1832. Cited 135 times. doi: 10.1109/TNS.2008.2001409Badhwar, G.D. The radiation environment in low-Earth orbit (1997) Radiation Research, 148 (5 SUPPL.), pp. S3-S10. Cited 120 times. doi: 10.2307/3579710Cucinotta, F.A., Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings (2006) Lancet Oncology, 7 (5), pp. 431-435. Cited 520 times. http://www.journals.elsevier.com/the-lancet-oncology/ doi: 10.1016/S1470-2045(06)70695-7Durante, M., Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration (Open Access) (2008) Nature Reviews Cancer, 8 (6), pp. 465-472. Cited 434 times. doi: 10.1038/nrc2391Durante, M., Loeffler, J.S. Charged particles in radiation oncology (Open Access) (2010) Nature Reviews Clinical Oncology, 7 (1), pp. 37-43. Cited 520 times. doi: 10.1038/nrclinonc.2009.183Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations (Open Access) (2002) Journal of Geophysical Research: Space Physics, 107 (A8). Cited 371 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402 doi: 10.1029/2001JA000220Ostapenko, A.A., Maltsev, Y.P. Relation of the magnetic field in the magnetosphere to the geomagnetic and solar wind activity (1997) Journal of Geophysical Research: Space Physics, 102 (A8), art. no. 97JA00937, pp. 17467-17473. Cited 32 times. http://agupubs.onlinelibrary.wiley.com/hub/jgr/journal/10.1002/(ISSN)2169-9402/ doi: 10.1029/97JA00937Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., (...), Petrou, N. On cosmic-ray cut-off terminology (1991) Il Nuovo Cimento C, 14 (3), pp. 213-234. Cited 161 times. doi: 10.1007/BF02509357Chowdhury, P., Kudela, K. Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017 (2018) Astrophysics and Space Science, 363 (12), art. no. 250. Cited 24 times. http://www.kluweronline.com/issn/0004-640X doi: 10.1007/s10509-018-3467-yLópez-Comazzi, A., Blanco, J.J. Short-Term Periodicities Observed in Neutron Monitor Counting Rates (Open Access) (2020) Solar Physics, 295 (6), art. no. 81. Cited 10 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-020-01649-5Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J. Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953-1996 (Open Access) (2003) Annales Geophysicae, 21 (8), pp. 1681-1689. Cited 40 times. http://www.ann-geophys.net/volumes_and_issues.html doi: 10.5194/angeo-21-1681-2003Domingues, M.O., Mendes Jr., O., Da Costa, A.M. On wavelet techniques in atmospheric sciences (2005) Advances in Space Research, 35 (5), pp. 831-842. Cited 107 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2005.02.097Christodoulakis, J., Varotsos, C.A., Mavromichalaki, H., Efstathiou, M.N., Gerontidou, M. On the link between atmospheric cloud parameters and cosmic rays (Open Access) (2019) Journal of Atmospheric and Solar-Terrestrial Physics, 189, pp. 98-106. Cited 6 times. http://www.journals.elsevier.com/journal-of-atmospheric-and-solar-terrestrial-physics/ doi: 10.1016/j.jastp.2019.04.012Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series (2002) Physica A: Statistical Mechanics and its Applications, 316 (1-4), pp. 87-114. Cited 2752 times. doi: 10.1016/S0378-4371(02)01383-3Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series (2006) Journal of Statistical Mechanics: Theory and Experiment, (2), art. no. P02003. Cited 268 times. doi: 10.1088/1742-5468/2006/02/P02003Wang, Y., Liu, L., Gu, R. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis (2009) International Review of Financial Analysis, 18 (5), pp. 271-276. Cited 182 times. doi: 10.1016/j.irfa.2009.09.005Rizvi, S.A.R., Dewandaru, G., Bacha, O.I., Masih, M. An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA (2014) Physica A: Statistical Mechanics and its Applications, 407, pp. 86-99. Cited 114 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2014.03.091Zhang, W., Wang, P., Li, X., Shen, D. The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average (2018) Physica A: Statistical Mechanics and its Applications, 510, pp. 658-670. Cited 94 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2018.07.032Wang, Y., Wu, C., Pan, Z. Multifractal detrending moving average analysis on the US Dollar exchange rates (Open Access) (2011) Physica A: Statistical Mechanics and its Applications, 390 (20), pp. 3512-3523. Cited 86 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.05.023Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., Sornette, D. Multifractal analysis of financial markets: A review (Open Access) (2019) Reports on Progress in Physics, 82 (12), art. no. 125901. Cited 155 times. https://iopscience.iop.org/article/10.1088/1361-6633/ab42fb/pdf doi: 10.1088/1361-6633/ab42fbShang, P., Lu, Y., Kamae, S. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis (2008) Chaos, Solitons and Fractals, 36 (1), pp. 82-90. Cited 151 times. https://www.journals.elsevier.com/chaos-solitons-and-fractals doi: 10.1016/j.chaos.2006.06.019Zhao, X., Shang, P., Lin, A., Chen, G. Multifractal Fourier detrended cross-correlation analysis of traffic signals (2011) Physica A: Statistical Mechanics and its Applications, 390 (21-22), pp. 3670-3678. Cited 92 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.06.018Zhang, X., Liu, H., Zhao, Y., Zhang, X. Multifractal detrended fluctuation analysis on air traffic flow time series: A single airport case (2019) Physica A: Statistical Mechanics and its Applications, 531, art. no. 121790. Cited 23 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2019.121790Wang, F., Liao, G.-P., Li, J.-H., Li, X.-C., Zhou, T.-J. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods (Open Access) (2013) Physica A: Statistical Mechanics and its Applications, 392 (22), pp. 5723-5734. Cited 50 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2013.07.039Yuan, X., Ji, B., Yuan, Y., Huang, Y., Li, X., Li, W. Multifractal detrended fluctuation analysis of electric load series (2015) Fractals, 23 (2), art. no. 1550010. Cited 11 times. http://www.worldscientific.com doi: 10.1142/S0218348X15500103Kurnaz, M.L. Detrended fluctuation analysis as a statistical tool to monitor the climate (Open Access) (2004) Journal of Statistical Mechanics: Theory and Experiment, (7), art. no. P07009. Cited 18 times. http://iopscience.iop.org/1742-5468/2004/07/P07009/pdf/1742-5468_2004_07_P07009.pdf doi: 10.1088/1742-5468/2004/07/P07009Wang, F., Liao, D.-W., Li, J.-W., Liao, G.-P. Two-dimensional multifractal detrended fluctuation analysis for plant identification (Open Access) (2015) Plant Methods, 11 (1), art. no. 12. Cited 34 times. http://www.plantmethods.com/ doi: 10.1186/s13007-015-0049-7Oswiecimka, P., Drod, S., Kwapie, J., Górski, A.Z. Effect of detrending on multifractal characteristics (Open Access) (2013) Acta Physica Polonica A, 123 (3), pp. 597-603. Cited 51 times. http://przyrbwn.icm.edu.pl/APP/PDF/123/a123z3p18.pdf doi: 10.12693/APhysPolA.123.597Koldobskiy, S.A., Kähkönen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G. Time Lag Between Cosmic-Ray and Solar Variability: Sunspot Numbers and Open Solar Magnetic Flux (Open Access) (2022) Solar Physics, 297 (3), art. no. 38. Cited 12 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-022-01970-1Drozdz, S., Os̈więcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series (Open Access) (2015) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91 (3), art. no. 030902. Cited 102 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevE.91.030902/apsxml doi: 10.1103/PhysRevE.91.030902Sierra Porta, D. Dataset: MultiFractal detrented fluctuations analysis on cosmic rays time series (2022) Mendeley Data, V2http://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdfScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdfapplication/pdf168832https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/1/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdfc9a97e2bb90713e5a8cd22d9611708c2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdf.txtScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdf.txtExtracted texttext/plain2454https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/4/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdf.txtad78b55279ad35ee6a065347d23c6ea0MD54THUMBNAILScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdf.jpgScopus - Document details - Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis.pdf.jpgGenerated Thumbnailimage/jpeg5996https://repositorio.utb.edu.co/bitstream/20.500.12585/12370/5/Scopus%20-%20Document%20details%20-%20Linking%20cosmic%20ray%20intensities%20to%20cutoff%20rigidity%20through%20multifractal%20detrented%20fluctuation%20analysis.pdf.jpg4ac861bd8556bef03fc8f43f294b9751MD5520.500.12585/12370oai:repositorio.utb.edu.co:20.500.12585/123702023-07-22 00:18:12.481Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=