CFD and 1D simulation of transient flow effect on air vessel
The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost al...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8924
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8924
- Palabra clave:
- Air vessel
CFD
Pressure surge
Water hammer
Computational fluid dynamics
Estimation
Hydraulic equipment
One dimensional
Water hammer
Air vessel
Experimental apparatus
Extreme conditions
Hydraulic system
Mathematical formulation
Monophasic flow
Pressure surges
Pressure values
Two phase flow
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_5aa76b081163e89e0209b6be3358f4f6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8924 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
CFD and 1D simulation of transient flow effect on air vessel |
title |
CFD and 1D simulation of transient flow effect on air vessel |
spellingShingle |
CFD and 1D simulation of transient flow effect on air vessel Air vessel CFD Pressure surge Water hammer Computational fluid dynamics Estimation Hydraulic equipment One dimensional Water hammer Air vessel Experimental apparatus Extreme conditions Hydraulic system Mathematical formulation Monophasic flow Pressure surges Pressure values Two phase flow |
title_short |
CFD and 1D simulation of transient flow effect on air vessel |
title_full |
CFD and 1D simulation of transient flow effect on air vessel |
title_fullStr |
CFD and 1D simulation of transient flow effect on air vessel |
title_full_unstemmed |
CFD and 1D simulation of transient flow effect on air vessel |
title_sort |
CFD and 1D simulation of transient flow effect on air vessel |
dc.subject.keywords.none.fl_str_mv |
Air vessel CFD Pressure surge Water hammer Computational fluid dynamics Estimation Hydraulic equipment One dimensional Water hammer Air vessel Experimental apparatus Extreme conditions Hydraulic system Mathematical formulation Monophasic flow Pressure surges Pressure values Two phase flow |
topic |
Air vessel CFD Pressure surge Water hammer Computational fluid dynamics Estimation Hydraulic equipment One dimensional Water hammer Air vessel Experimental apparatus Extreme conditions Hydraulic system Mathematical formulation Monophasic flow Pressure surges Pressure values Two phase flow |
description |
The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost all of them are not suitable for two-phase flows. In this research, an experimental apparatus including valves, pipes and an air vessel is used to fulfil the experiments. A mathematical formulation and a two-dimensional computational fluid dynamics (2D CFD) model have been used to predict the extreme conditions. Results show that 1D model is able to predict pressure values with acceptable accuracy. However, the 2D CFD model can be used to detect the specialized problems in a system by providing very high range of the information. © BHR Group 2018 Pressure Surges 13 |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
13th International Conference on Pressure Surges; Vol. 1, pp. 73-85 |
dc.identifier.isbn.none.fl_str_mv |
9780000000002 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8924 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57205420202 57193337460 56074282700 57193113023 35568240000 |
identifier_str_mv |
13th International Conference on Pressure Surges; Vol. 1, pp. 73-85 9780000000002 Universidad Tecnológica de Bolívar Repositorio UTB 57205420202 57193337460 56074282700 57193113023 35568240000 |
url |
https://hdl.handle.net/20.500.12585/8924 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 November 2018 through 16 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BHR Group Limited |
publisher.none.fl_str_mv |
BHR Group Limited |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059024875&partnerID=40&md5=5ff92a0e82027242be659740d33e42a5 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
13th International Conference on Pressure Surges |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8924/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021707512414208 |
spelling |
2020-03-26T16:32:36Z2020-03-26T16:32:36Z201813th International Conference on Pressure Surges; Vol. 1, pp. 73-859780000000002https://hdl.handle.net/20.500.12585/8924Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost all of them are not suitable for two-phase flows. In this research, an experimental apparatus including valves, pipes and an air vessel is used to fulfil the experiments. A mathematical formulation and a two-dimensional computational fluid dynamics (2D CFD) model have been used to predict the extreme conditions. Results show that 1D model is able to predict pressure values with acceptable accuracy. However, the 2D CFD model can be used to detect the specialized problems in a system by providing very high range of the information. © BHR Group 2018 Pressure Surges 13Recurso electrónicoapplication/pdfengBHR Group Limitedhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85059024875&partnerID=40&md5=5ff92a0e82027242be659740d33e42a513th International Conference on Pressure SurgesCFD and 1D simulation of transient flow effect on air vesselinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir vesselCFDPressure surgeWater hammerComputational fluid dynamicsEstimationHydraulic equipmentOne dimensionalWater hammerAir vesselExperimental apparatusExtreme conditionsHydraulic systemMathematical formulationMonophasic flowPressure surgesPressure valuesTwo phase flow14 November 2018 through 16 November 2018Besharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) Journal of Hydraulic Engineering, 139, pp. 1041-1051Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply Resources Technology-Aqua, 65, pp. 116-126Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water, 8, p. 25Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9, p. 98Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2018) Journal of Hydraulic ResearchStephenson, D., Simple guide for design of air vessels for water hammer protection on pumping lines (2002) Journal of Hydraulic Engineering, 128, pp. 792-797Besharat, M., Viseu, M.T., Ramos, H.M., Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence (2017) Water, 9 (1), p. 63Ruus, E., Karney, B., (1997) Applied Hydraulic Transients, , Friesens Corporation: Altona, MB, CanadaIzquierdo, J., Lopez, P.A., Lopez, G., Martinez, F.J., Perez, R., Encapsulation of air vessel design in a neural network (2006) Applied Mathematical Modelling, 30, pp. 395-405De Martino, G., Fontana, N., Simplified approach for the optimal sizing of throttled air chambers (2012) J. Hydraul. Eng., 138, pp. 1101-1109Ramalingam, D., Lingireddy, S., Neural network-derived heuristic framework for sizing surge vessels (2014) Journal of Water Resources Planning and Management, 140, pp. 678-692Zhang, J., Miao, D., Chen, S., Li, D., An approximate analytical method to size an air vessel in water supply system (2016) Water Science and Technology: Water Supply, , ws2016201Miao, D., Zhang, J., Chen, S., Yu, X., Water hammer suppression for long distance water supply systems by combining the air vessel and valve (2017) Journal of Water Supply: Research and Technology-Aqua, 66 (5), pp. 319-326Malekpour, A., Karney, B., Nault, J., Physical understanding of sudden pressurization of pipe systems with entrapped air: Energy auditing approach (2015) Journal of Hydraulic Engineering, 142 (2)Pozos-Estrada, O., Sánchez-Huerta, A., Breña-Naranjo, J.A., Pedrozo-Acuña, A., Failure analysis of a water supply pumping pipeline system (2016) Water, 8, p. 395Liu, J., Zhang, J., Yu, X., Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe (2018) Journal of Water Supply: Research and Technology-Aqua, , pressBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket (2018) Urban Water Journal, , manuscript for publicationBesharat, M., Ramos, H.M., Theorical and experimental analysis of pressure surge in a two-phase compressed air vessel (2015) 12 th International Conference on Pressure Surges, pp. 729-744. , BHR Group, Ireland, DublinKim, S.G., Lee, K.B., Kim, K.Y., Water hammer in the pump-rising pipeline system with an air chamber (2015) Journal of Hydrodynamics, 26 (6), pp. 960-964Wang, C., Yang, J., Nilsson, H., Simulation of water level fluctuations in a hydraulic system using a coupled liquid-gas model (2015) Water, 7, pp. 4446-4476ANSYS FLUENT R19.0 Academic [Computer Software], , ANSYS, Canonsburg, PAhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8924/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8924oai:repositorio.utb.edu.co:20.500.12585/89242023-05-26 09:43:59.06Repositorio Institucional UTBrepositorioutb@utb.edu.co |