CFD and 1D simulation of transient flow effect on air vessel

The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost al...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8924
Acceso en línea:
https://hdl.handle.net/20.500.12585/8924
Palabra clave:
Air vessel
CFD
Pressure surge
Water hammer
Computational fluid dynamics
Estimation
Hydraulic equipment
One dimensional
Water hammer
Air vessel
Experimental apparatus
Extreme conditions
Hydraulic system
Mathematical formulation
Monophasic flow
Pressure surges
Pressure values
Two phase flow
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5aa76b081163e89e0209b6be3358f4f6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8924
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv CFD and 1D simulation of transient flow effect on air vessel
title CFD and 1D simulation of transient flow effect on air vessel
spellingShingle CFD and 1D simulation of transient flow effect on air vessel
Air vessel
CFD
Pressure surge
Water hammer
Computational fluid dynamics
Estimation
Hydraulic equipment
One dimensional
Water hammer
Air vessel
Experimental apparatus
Extreme conditions
Hydraulic system
Mathematical formulation
Monophasic flow
Pressure surges
Pressure values
Two phase flow
title_short CFD and 1D simulation of transient flow effect on air vessel
title_full CFD and 1D simulation of transient flow effect on air vessel
title_fullStr CFD and 1D simulation of transient flow effect on air vessel
title_full_unstemmed CFD and 1D simulation of transient flow effect on air vessel
title_sort CFD and 1D simulation of transient flow effect on air vessel
dc.subject.keywords.none.fl_str_mv Air vessel
CFD
Pressure surge
Water hammer
Computational fluid dynamics
Estimation
Hydraulic equipment
One dimensional
Water hammer
Air vessel
Experimental apparatus
Extreme conditions
Hydraulic system
Mathematical formulation
Monophasic flow
Pressure surges
Pressure values
Two phase flow
topic Air vessel
CFD
Pressure surge
Water hammer
Computational fluid dynamics
Estimation
Hydraulic equipment
One dimensional
Water hammer
Air vessel
Experimental apparatus
Extreme conditions
Hydraulic system
Mathematical formulation
Monophasic flow
Pressure surges
Pressure values
Two phase flow
description The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost all of them are not suitable for two-phase flows. In this research, an experimental apparatus including valves, pipes and an air vessel is used to fulfil the experiments. A mathematical formulation and a two-dimensional computational fluid dynamics (2D CFD) model have been used to predict the extreme conditions. Results show that 1D model is able to predict pressure values with acceptable accuracy. However, the 2D CFD model can be used to detect the specialized problems in a system by providing very high range of the information. © BHR Group 2018 Pressure Surges 13
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 13th International Conference on Pressure Surges; Vol. 1, pp. 73-85
dc.identifier.isbn.none.fl_str_mv 9780000000002
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8924
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205420202
57193337460
56074282700
57193113023
35568240000
identifier_str_mv 13th International Conference on Pressure Surges; Vol. 1, pp. 73-85
9780000000002
Universidad Tecnológica de Bolívar
Repositorio UTB
57205420202
57193337460
56074282700
57193113023
35568240000
url https://hdl.handle.net/20.500.12585/8924
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BHR Group Limited
publisher.none.fl_str_mv BHR Group Limited
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059024875&partnerID=40&md5=5ff92a0e82027242be659740d33e42a5
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 13th International Conference on Pressure Surges
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8924/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707512414208
spelling 2020-03-26T16:32:36Z2020-03-26T16:32:36Z201813th International Conference on Pressure Surges; Vol. 1, pp. 73-859780000000002https://hdl.handle.net/20.500.12585/8924Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The estimation of unsteady parameters in two-phase condition is crucial for the safety and reliability of the hydraulic systems. There are plenty of one-dimensional (1D) simulation tools for unsteady flow estimation being some of them able to present good results in monophasic flows, while almost all of them are not suitable for two-phase flows. In this research, an experimental apparatus including valves, pipes and an air vessel is used to fulfil the experiments. A mathematical formulation and a two-dimensional computational fluid dynamics (2D CFD) model have been used to predict the extreme conditions. Results show that 1D model is able to predict pressure values with acceptable accuracy. However, the 2D CFD model can be used to detect the specialized problems in a system by providing very high range of the information. © BHR Group 2018 Pressure Surges 13Recurso electrónicoapplication/pdfengBHR Group Limitedhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85059024875&partnerID=40&md5=5ff92a0e82027242be659740d33e42a513th International Conference on Pressure SurgesCFD and 1D simulation of transient flow effect on air vesselinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir vesselCFDPressure surgeWater hammerComputational fluid dynamicsEstimationHydraulic equipmentOne dimensionalWater hammerAir vesselExperimental apparatusExtreme conditionsHydraulic systemMathematical formulationMonophasic flowPressure surgesPressure valuesTwo phase flow14 November 2018 through 16 November 2018Besharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) Journal of Hydraulic Engineering, 139, pp. 1041-1051Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply Resources Technology-Aqua, 65, pp. 116-126Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water, 8, p. 25Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9, p. 98Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2018) Journal of Hydraulic ResearchStephenson, D., Simple guide for design of air vessels for water hammer protection on pumping lines (2002) Journal of Hydraulic Engineering, 128, pp. 792-797Besharat, M., Viseu, M.T., Ramos, H.M., Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence (2017) Water, 9 (1), p. 63Ruus, E., Karney, B., (1997) Applied Hydraulic Transients, , Friesens Corporation: Altona, MB, CanadaIzquierdo, J., Lopez, P.A., Lopez, G., Martinez, F.J., Perez, R., Encapsulation of air vessel design in a neural network (2006) Applied Mathematical Modelling, 30, pp. 395-405De Martino, G., Fontana, N., Simplified approach for the optimal sizing of throttled air chambers (2012) J. Hydraul. Eng., 138, pp. 1101-1109Ramalingam, D., Lingireddy, S., Neural network-derived heuristic framework for sizing surge vessels (2014) Journal of Water Resources Planning and Management, 140, pp. 678-692Zhang, J., Miao, D., Chen, S., Li, D., An approximate analytical method to size an air vessel in water supply system (2016) Water Science and Technology: Water Supply, , ws2016201Miao, D., Zhang, J., Chen, S., Yu, X., Water hammer suppression for long distance water supply systems by combining the air vessel and valve (2017) Journal of Water Supply: Research and Technology-Aqua, 66 (5), pp. 319-326Malekpour, A., Karney, B., Nault, J., Physical understanding of sudden pressurization of pipe systems with entrapped air: Energy auditing approach (2015) Journal of Hydraulic Engineering, 142 (2)Pozos-Estrada, O., Sánchez-Huerta, A., Breña-Naranjo, J.A., Pedrozo-Acuña, A., Failure analysis of a water supply pumping pipeline system (2016) Water, 8, p. 395Liu, J., Zhang, J., Yu, X., Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe (2018) Journal of Water Supply: Research and Technology-Aqua, , pressBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket (2018) Urban Water Journal, , manuscript for publicationBesharat, M., Ramos, H.M., Theorical and experimental analysis of pressure surge in a two-phase compressed air vessel (2015) 12 th International Conference on Pressure Surges, pp. 729-744. , BHR Group, Ireland, DublinKim, S.G., Lee, K.B., Kim, K.Y., Water hammer in the pump-rising pipeline system with an air chamber (2015) Journal of Hydrodynamics, 26 (6), pp. 960-964Wang, C., Yang, J., Nilsson, H., Simulation of water level fluctuations in a hydraulic system using a coupled liquid-gas model (2015) Water, 7, pp. 4446-4476ANSYS FLUENT R19.0 Academic [Computer Software], , ANSYS, Canonsburg, PAhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8924/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8924oai:repositorio.utb.edu.co:20.500.12585/89242023-05-26 09:43:59.06Repositorio Institucional UTBrepositorioutb@utb.edu.co