Ultrasound image enhancement: A review

Medical ultrasound imaging uses pulsed acoustic waves that are transmitted and received by a hand-held transducer. This is a mature technology that it is widely used around the world. Among its advantages are that it is cost-effective, flexible, and does not require ionizing radiation. However, the...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9096
Acceso en línea:
https://hdl.handle.net/20.500.12585/9096
Palabra clave:
Speckle reduction
Ultrasound enhancement
Ultrasound imaging
Biological tissues
Medical ultrasound imaging
Post processing
Speckle reduction
Ultrasound image enhancements
Ultrasound imaging
Ultrasound signal
Degradation
Lonizing radiation
Ultrasonic imaging
Ultrasonics
Anisotropic diffusion
Apodization
Artifact
Beamforming technique
Clinical effectiveness
Compounding
Contrast enhancement
Deconvolution
Diagnostic procedure
Digital filtering
Dynamically focused transmission and reception
Frequency compounding
Harmonic imaging
Human
Image processing
Limited diffraction beam
Priority journal
Pulse compression
Pulse inversion
Review
Spatial compounding
Strain compounding
Ultrasound
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5985cb8fbb279a421039f73d3031c930
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9096
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Ultrasound image enhancement: A review
title Ultrasound image enhancement: A review
spellingShingle Ultrasound image enhancement: A review
Speckle reduction
Ultrasound enhancement
Ultrasound imaging
Biological tissues
Medical ultrasound imaging
Post processing
Speckle reduction
Ultrasound image enhancements
Ultrasound imaging
Ultrasound signal
Degradation
Lonizing radiation
Ultrasonic imaging
Ultrasonics
Anisotropic diffusion
Apodization
Artifact
Beamforming technique
Clinical effectiveness
Compounding
Contrast enhancement
Deconvolution
Diagnostic procedure
Digital filtering
Dynamically focused transmission and reception
Frequency compounding
Harmonic imaging
Human
Image processing
Limited diffraction beam
Priority journal
Pulse compression
Pulse inversion
Review
Spatial compounding
Strain compounding
Ultrasound
title_short Ultrasound image enhancement: A review
title_full Ultrasound image enhancement: A review
title_fullStr Ultrasound image enhancement: A review
title_full_unstemmed Ultrasound image enhancement: A review
title_sort Ultrasound image enhancement: A review
dc.subject.keywords.none.fl_str_mv Speckle reduction
Ultrasound enhancement
Ultrasound imaging
Biological tissues
Medical ultrasound imaging
Post processing
Speckle reduction
Ultrasound image enhancements
Ultrasound imaging
Ultrasound signal
Degradation
Lonizing radiation
Ultrasonic imaging
Ultrasonics
Anisotropic diffusion
Apodization
Artifact
Beamforming technique
Clinical effectiveness
Compounding
Contrast enhancement
Deconvolution
Diagnostic procedure
Digital filtering
Dynamically focused transmission and reception
Frequency compounding
Harmonic imaging
Human
Image processing
Limited diffraction beam
Priority journal
Pulse compression
Pulse inversion
Review
Spatial compounding
Strain compounding
Ultrasound
topic Speckle reduction
Ultrasound enhancement
Ultrasound imaging
Biological tissues
Medical ultrasound imaging
Post processing
Speckle reduction
Ultrasound image enhancements
Ultrasound imaging
Ultrasound signal
Degradation
Lonizing radiation
Ultrasonic imaging
Ultrasonics
Anisotropic diffusion
Apodization
Artifact
Beamforming technique
Clinical effectiveness
Compounding
Contrast enhancement
Deconvolution
Diagnostic procedure
Digital filtering
Dynamically focused transmission and reception
Frequency compounding
Harmonic imaging
Human
Image processing
Limited diffraction beam
Priority journal
Pulse compression
Pulse inversion
Review
Spatial compounding
Strain compounding
Ultrasound
description Medical ultrasound imaging uses pulsed acoustic waves that are transmitted and received by a hand-held transducer. This is a mature technology that it is widely used around the world. Among its advantages are that it is cost-effective, flexible, and does not require ionizing radiation. However, the image quality is affected by degradation of ultrasound signals when propagating through biological tissues. Many efforts have been done in the last three decades to improve the quality of the images. This paper reviews some of the most important methods for ultrasound enhancement. We classified these techniques into two groups: preprocessing and post-processing, analyzed their benefits and limitations, and presented our beliefs about where ultrasound research could be directed to, in order to improve its effectiveness and broaden its applications. © 2011 Elsevier Ltd.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:56Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:56Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_efa0
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/review
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo de revisión
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Biomedical Signal Processing and Control; Vol. 7, Núm. 5; pp. 419-428
dc.identifier.issn.none.fl_str_mv 17468094
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9096
dc.identifier.doi.none.fl_str_mv 10.1016/j.bspc.2012.02.002
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210822856
56447970600
7401718655
identifier_str_mv Biomedical Signal Processing and Control; Vol. 7, Núm. 5; pp. 419-428
17468094
10.1016/j.bspc.2012.02.002
Universidad Tecnológica de Bolívar
Repositorio UTB
57210822856
56447970600
7401718655
url https://hdl.handle.net/20.500.12585/9096
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863724273&doi=10.1016%2fj.bspc.2012.02.002&partnerID=40&md5=9af047b9c81aa0916b6e6de451555fcb
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/1/MiniProdInv.png
https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/4/1-s2.0-S1746809412000183-main.pdf.jpg
https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/2/1-s2.0-S1746809412000183-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/3/1-s2.0-S1746809412000183-main.pdf.txt
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
2c848ef10f815839927cfdc8d77641fe
32f7912d9a371485c2b6ae905f4b997f
3d7d9684d2d4a03c0394aececca1ff38
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596062416896
spelling 2020-03-26T16:32:56Z2020-03-26T16:32:56Z2012Biomedical Signal Processing and Control; Vol. 7, Núm. 5; pp. 419-42817468094https://hdl.handle.net/20.500.12585/909610.1016/j.bspc.2012.02.002Universidad Tecnológica de BolívarRepositorio UTB57210822856564479706007401718655Medical ultrasound imaging uses pulsed acoustic waves that are transmitted and received by a hand-held transducer. This is a mature technology that it is widely used around the world. Among its advantages are that it is cost-effective, flexible, and does not require ionizing radiation. However, the image quality is affected by degradation of ultrasound signals when propagating through biological tissues. Many efforts have been done in the last three decades to improve the quality of the images. This paper reviews some of the most important methods for ultrasound enhancement. We classified these techniques into two groups: preprocessing and post-processing, analyzed their benefits and limitations, and presented our beliefs about where ultrasound research could be directed to, in order to improve its effectiveness and broaden its applications. © 2011 Elsevier Ltd.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84863724273&doi=10.1016%2fj.bspc.2012.02.002&partnerID=40&md5=9af047b9c81aa0916b6e6de451555fcbUltrasound image enhancement: A reviewinfo:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionArtículo de revisiónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Speckle reductionUltrasound enhancementUltrasound imagingBiological tissuesMedical ultrasound imagingPost processingSpeckle reductionUltrasound image enhancementsUltrasound imagingUltrasound signalDegradationLonizing radiationUltrasonic imagingUltrasonicsAnisotropic diffusionApodizationArtifactBeamforming techniqueClinical effectivenessCompoundingContrast enhancementDeconvolutionDiagnostic procedureDigital filteringDynamically focused transmission and receptionFrequency compoundingHarmonic imagingHumanImage processingLimited diffraction beamPriority journalPulse compressionPulse inversionReviewSpatial compoundingStrain compoundingUltrasoundContreras Ortiz, Sonia HelenaChiu T.Fox M.D.Cronan, J.J., Ultrasound: Is There a Future in Diagnostic Imaging? (2006) JACR Journal of the American College of Radiology, 3 (9), pp. 645-646. , DOI 10.1016/j.jacr.2006.04.006, PII S1546144006002109Moreau, J.F., Re: ""Ultrasound: Is There a Future in Diagnostic Imaging?"" (2007) JACR Journal of the American College of Radiology, 4 (1), pp. 78-79. , DOI 10.1016/j.jacr.2006.11.011, PII S1546144006006648Wells, P., Ultrasound imaging (2006) Physics in Medicine and Biology, 51 (13), pp. 83-R98Harvey, C.J., Pilcher, J.M., Eckersley, R.J., Blomley, M.J., Cosgrove, D.O., Advances in ultrasound (2002) Clinical Radiology, 57 (3), pp. 157-177Quistgaard, J.U., Signal acquisition and processing in medical diagnostic ultrasound (1997) IEEE Signal Processing Magazine, 14 (1), pp. 67-74MacOvski, A., (1983) Medical Imaging Systems, , Prentice-HallPrince, J., Links, J., (2006) Medical Imaging Signals and Systems, , Pearson Prentice HallNg, J., Prager, R., Kingsbury, N., Treece, G., Gee, A., Modeling ultrasound imaging as a linear, shift-variant system (2006) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53 (3), pp. 549-563Goodman, J., (2007) Speckle Phenomena in Optics: Theory and Applications, , Roberts & CoWagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H., Statistics of speckle in ultrasound b-scans (1983) IEEE Transactions on Sonics and Ultrasonics, 30 (3), pp. 156-163Burckhardt, C.B., Speckle in ultrasound B-mode scans (1978) IEEE Transactions on Sonics and Ultrasonics, 25 (1), pp. 1-6Dutt, V., Greenleaf, J.F., Adaptive speckle reduction filter for log-compressed B-scan images (1996) IEEE Transactions on Medical Imaging, 15 (6), pp. 802-813. , PII S0278006296086995Kaplan, D., Ma, Q., On the statistical characteristics of log-compressed Rayleigh signals: Theoretical formulation and experimental results (1994) Journal of the Acoustical Society of America, 95 (3), pp. 1396-1400Abd-Elmoniem, K.Z., Youssef, A.-B.M., Kadah, Y.M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Transactions on Biomedical Engineering, 49 (9), pp. 997-1014. , DOI 10.1109/TBME.2002.1028423Kremkau, F.W., Taylor, K.J.W., Artifacts in ultrasound imaging (1986) Journal of Ultrasound in Medicine, 5 (4), pp. 227-237Feldman, K.S.B.M., Us artifacts (2009) Radiographics, 29 (4), pp. 1179-1189Laing, F., Kurtz, A., The importance of ultrasonic side-lobe artifacts (1982) Radiology, 145 (3), pp. 763-768Lu, J.-Y., Zou, H., Greenleaf, J.F., Biomedical ultrasound beam forming (1994) Ultrasound in Medicine and Biology, 20 (5), pp. 403-428. , DOI 10.1016/0301-5629(94)90097-3Jensen, J.A., Nikolov, S.I., Gammelmark, K.L., Pedersen, M.H., Synthetic aperture ultrasound imaging (2006) Ultrasonics, 44 (SUPPL.), pp. e5-e15. , DOI 10.1016/j.ultras.2006.07.017, PII S0041624X06003374Mandersson, S.G., Bengt, Weighted least-squares pulse-shaping filters with application to ultrasonic signals (1989) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36 (1), pp. 109-113. , cited by (since 1996) 5Wilkening, W., Brendel, B., Jiang, H., Lazenby, J., Ermert, H., Optimized receive filters and phase-coded pulse sequences for contrast agent and nonlinear imaging 2 Ultrasonics Symposium, 2001 IEEE, pp. 1733-1737. , cited by (since 1996) 10Guenther, D.A., Walker, W.F., Optimal apodization design for medical ultrasound using constrained least squares part I: theory (2007) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54 (2), pp. 332-341. , DOI 10.1109/TUFFC.2007.247Misaridis, T., Jensen, J.A., Use of modulated excitation Signals in medical ultrasound. Part I: Basic concepts and expected benefits (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 177-190. , DOI 10.1109/TUFFC.2005.1406545Misaridis, T., Jensen, J.A., Use of modulated excitation signals in medical ultrasound. Part II: Design and performance for medical imaging applications (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 192-206. , DOI 10.1109/TUFFC.2005.1406546Misaridis, T., Jensen, J.A., Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 208-218. , DOI 10.1109/TUFFC.2005.1406547Chiao, H.X., Coded excitation for diagnostic ultrasound: A system developer's perspective (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 160-170. , cited by (since 1996) 113Jensen, J.A., FIELD: A program for simulating ultrasound systems (1996) Medical and Biological Engineering and Computing, 34 (SUPPL. 1), pp. 351-352Jensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (2), pp. 262-267Contreras Ortiz, S.H., MacIone, J.J., Fox, M.D., Enhancement of ultrasound images by displacement, averaging, and interlacing (2010) Journal of Electronic Imaging, 19 (1)Shankar P.Mohana, Newhouse, V.L., Speckle reduction with improved resolution in ultrasound images (1985) IEEE transactions on sonics and ultrasonics, SU-32 (4), pp. 537-543Shankar P.Mohana, Speckle reduction in ultrasound b-scans using weighted averaging in spatial compounding (1986) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-33 (6), pp. 754-758Bashford, G.R., Morse, J.L., Circular ultrasound compounding by designed matrix weighting (2006) IEEE Transactions on Medical Imaging, 25 (6), pp. 732-741. , DOI 10.1109/TMI.2006.873610, 1637531Berson, M., Roncin, A., Pourcelot, L., Compound scanning with an electrically steered beam (1981) Ultrasonic Imaging, 3 (3), pp. 303-308. , DOI 10.1016/0161-7346(81)90162-0Jespersen, S.K., Wilhjelm, J.E., Sillesen, H., Multi-angle compound imaging (1998) Ultrasonic Imaging, 20 (2), pp. 81-102Trahey, G.E., Smith, S.W., Von Ramm, O.T., Speckle pattern correlation with lateral aperture translation: Experimental results and implications for spatial compounding (1986) Modelling, Measurement and Control A, UFFC-33 (3), pp. 257-264Vogt, M., Ermert, H., Limited-angle spatial compound imaging of skin with high-frequency ultrasound (20 mhz) (2008) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (9), pp. 1975-1983Hansen, C., Huttebrauker, N., Wilkening, W., Brunke, S., Ermert, H., Full angle spatial compounding for improved replenishment analyses in contrast perfusion imaging: In vitro studies (2008) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (4), pp. 819-830. , DOI 10.1109/TUFFC.2008.716, 4494776MacIone, J., Yang, Z., Fox, M., Paired-angle multiplicative compounding (2008) Ultrasonic Imaging, 30 (2), pp. 112-130Pai C.L.O'Donnell, M., Elevational spatial compounding (1994) Ultrasonic Imaging, 16 (3), pp. 176-189. , DOI 10.1006/uimg.1994.1011Behar, V., Adam, D., Friedman, Z., A new method of spatial compounding imaging (2003) Ultrasonics, 41 (5), pp. 377-384Adam, D., Beilin-Nissan, S., Friedman, Z., Behar, V., The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images (2006) Ultrasonics, 44 (2), pp. 166-181. , DOI 10.1016/j.ultras.2005.10.003, PII S0041624X05001009Wilhjelm, J.E., Jensen, M.S., Jespersen, S.K., Sahl, B., Falk, E., Visual and quantitative evaluation of selected image combination schemes in ultrasound spatial compound scanning (2004) IEEE Transactions on Medical Imaging, 23 (2), pp. 181-190Abbott, J.G., Thurstone, F.L., Acoustic speckle: Theory and experimental analysis (1979) Ultrasonic Imaging, 1 (4), pp. 303-324. , DOI 10.1016/0161-7346(79)90024-5Trahey, G.E., Allison, J.W., Smith, S.W., Von Ramm, O.T., A quantitative approach to speckle reduction via frequency compounding (1986) Ultrasonic Imaging, 8 (3), pp. 151-164. , DOI 10.1016/0161-7346(86)90006-4Magnin, P.A., Von Ramm, O.T., Thurstone, F.L., Frequency compounding for speckle contrast reduction in phased array images (1982) Ultrasonic Imaging, 4 (3), pp. 267-281. , DOI 10.1016/0161-7346(82)90011-6Chang, J.H., Kim, H.H., Lee, J., Shung, K.K., Frequency compounded imaging with a high-frequency dual element transducer (2010) Ultrasonics, 50 (45), pp. 453-457Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S., Flaw-to-grain echo enhancement by split-spectrum processing (1982) Ultrasonics, 20 (2), pp. 59-68. , DOI 10.1016/0041-624X(82)90003-8Dantas, R.G., Costa, E.T., Ultrasound speckle reduction using modified gabor filters (2007) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54 (3), pp. 530-538. , DOI 10.1109/TUFFC.2007.276Sanchez, J.R., Oelze, M., Oelze, M.L., An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation (2009) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56 (7), pp. 1327-1339Li, P.C., Chen, M.J., Strain compounding: A new approach for speckle reduction (2002) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49 (1), pp. 39-46Christopher, T., Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging (1997) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (1), pp. 125-139Humphrey, V.F., Nonlinear propagation in ultrasonic fields: Measurements, modelling and harmonic imaging (2000) Ultrasonics, 38 (1), pp. 267-272. , DOI 10.1016/S0041-624X(99)00122-5Duck, F.A., Nonlinear acoustics in diagnostic ultrasound (2002) Ultrasound in Medicine and Biology, 28 (1), pp. 1-18. , DOI 10.1016/S0301-5629(01)00463-X, PII S030156290100463XMuir, T.G., Carstensen, E.L., Prediction of nonlinear acoustic effects at biomedical frequencies and intensities (1980) Ultrasound in Medicine and Biology, 6 (4), pp. 345-357. , DOI 10.1016/0301-5629(80)90004-6Ward, B., Baker, A.C., Humphrey, V.F., Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound (1997) Journal of the Acoustical Society of America, 101 (1), pp. 143-154. , DOI 10.1121/1.417977De Jong, N., Cornet, R., Lancee, C.T., Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements (1994) Ultrasonics, 32 (6), pp. 455-459. , DOI 10.1016/0041-624X(94)90065-5Simpson, D.H., Chin, C.T., Burns, P.N., Pulse inversion doppler: A new method for detecting nonlinear echoes from microbubble contrast agents (1999) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (2), pp. 372-382Frinking, P.J.A., Bouakaz, A., Kirkhorn, J., Ten Cate, F.J., De Jong, N., Ultrasound contrast imaging: Current and new potential methods (2000) Ultrasound in Medicine and Biology, 26 (6), pp. 965-975Thijssen, J.M., Ultrasonic speckle formation, analysis and processing applied to tissue characterization (2003) Pattern Recognition Letters, 24 (4-5), pp. 659-675. , DOI 10.1016/S0167-8655(02)00173-3, PII S0167865502001733Noble, J.A., Boukerroui, D., Ultrasound image segmentation: A survey (2006) IEEE Transactions on Medical Imaging, 25 (8), pp. 987-1010. , DOI 10.1109/TMI.2006.877092, 1661695Lee, J.-S., Digital image enhancement and noise filtering by use of local statistics (1980) IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 2 (2), pp. 165-168Frost Victor, S., Stiles Josephine Abbott, Shanmugan, K.S., Holtzman Julian, C., Model for radar images and its application to adaptive digital filtering of multiplicative noise (1982) IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4 (2), pp. 157-166Bamber, J.C., Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images (1986) Ultrasonics, 24 (1), pp. 41-44. , DOI 10.1016/0041-624X(86)90072-7Chen, Y., Yin, R., Flynn, P., Broschat, S., Aggressive region growing for speckle reduction in ultrasound images (2003) Pattern Recognition Letters, 24 (4-5), pp. 677-691. , DOI 10.1016/S0167-8655(02)00174-5, PII S0167865502001745Perona Pietro, Malik Jitendra, Scale-space and edge detection using anisotropic diffusion (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), pp. 629-639. , DOI 10.1109/34.56205Yongjian, Y., Acton, S.T., Speckle reducing anisotropic diffusion (2002) IEEE Transactions on Image Processing, 11 (11), pp. 1260-1270Krissian, K., Westin, C.-F., Kikinis, R., Vosburgh, K.G., Oriented speckle reducing anisotropic diffusion (2007) IEEE Transactions on Image Processing, 16 (5), pp. 1412-1424. , DOI 10.1109/TIP.2007.891803Guo, H., Odegard, J.E., Lang, M., Gopinath, R.A., Selesnick, I.W., Burrus, C.S., Wavelet based speckle reduction with application to sar based atd/r (1994) Proceedings of the ICIP-94, IEEE International Conference on Image Processing, 1, pp. 75-79Zong, X., Laine, A.F., Geiser, E.A., Speckle Reduction and Contrast Enhancement of Echocardiograms via Multiscale Nonlinear Processing (1998) IEEE Transactions on Medical Imaging, 17 (4), pp. 532-540. , PII S0278006298080495Gupta, S., Chauhan, R.C., Sexana, S.C., Wavelet-based statistical approach for speckle reduction in medical ultrasound images (2004) Medical and Biological Engineering and Computing, 42 (2), pp. 189-192. , DOI 10.1007/BF02344630Yue, Y., Croitoru, M.M., Bidani, A., Zwischenberger, J.B., Clark Jr., J.W., Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images (2006) IEEE Transactions on Medical Imaging, 25 (3), pp. 297-311. , DOI 10.1109/TMI.2005.862737Michailovich, O.V., Adam, D., A novel approach to the 2-D blind deconvolution problem in medical ultrasound (2005) IEEE Transactions on Medical Imaging, 24 (1), pp. 86-104. , DOI 10.1109/TMI.2004.838326Abeyratne, U.R., Petropulu, A.P., Reid, J.M., Higher order spectra based deconvolution of ultrasound images (1995) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42 (6), pp. 1064-1075Taxt, T., Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images (1997) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (3), pp. 666-674Taxt, T., Strand, J., Two-dimensional noise-robust blind deconvolution of ultrasound images (2001) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48 (4), pp. 861-867. , DOI 10.1109/58.935701Wan, S., Raju, B.I., Srinivasan, M.A., Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets (2003) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50 (10), pp. 1286-1295Loizou, C.P., Pattichis, C.S., Christodoulou, C.I., Istepanian, R.S.H., Pantziaris, M., Nicolaides, A., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (10), pp. 1653-1669. , DOI 10.1109/TUFFC.2005.1561621Finn, S., Glavin, M., Jones, E., Echocardiographic speckle reduction comparison (2011) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58 (1), pp. 82-101http://purl.org/coar/resource_type/c_dcae04bcTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S1746809412000183-main.pdf.jpg1-s2.0-S1746809412000183-main.pdf.jpgGenerated Thumbnailimage/jpeg84950https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/4/1-s2.0-S1746809412000183-main.pdf.jpg2c848ef10f815839927cfdc8d77641feMD54ORIGINAL1-s2.0-S1746809412000183-main.pdf1-s2.0-S1746809412000183-main.pdfapplication/pdf861343https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/2/1-s2.0-S1746809412000183-main.pdf32f7912d9a371485c2b6ae905f4b997fMD52TEXT1-s2.0-S1746809412000183-main.pdf.txt1-s2.0-S1746809412000183-main.pdf.txtExtracted texttext/plain72585https://repositorio.utb.edu.co/bitstream/20.500.12585/9096/3/1-s2.0-S1746809412000183-main.pdf.txt3d7d9684d2d4a03c0394aececca1ff38MD5320.500.12585/9096oai:repositorio.utb.edu.co:20.500.12585/90962023-05-25 15:44:55.928Repositorio Institucional UTBrepositorioutb@utb.edu.co