Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method
In this paper, we address the problem of the optimal power dispatch of Distributed Generators (DGs) in Alternating Current (AC) networks, better known as the Optimal Power Flow (OPF) problem. We used, as the objective function, the minimization of power losses (Formula presented.) associated with en...
- Autores:
-
Rosales-Muñoz, Andrés Alfonso
Montano, Jhon
Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Andrade, Fabio
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12415
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12415
- Palabra clave:
- Microgrid;
DC-DC Converter;
Electric Potential
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_594a1ff7207e2d4a9f9fbb15d7ac0821 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12415 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
title |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
spellingShingle |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method Microgrid; DC-DC Converter; Electric Potential LEMB |
title_short |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
title_full |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
title_fullStr |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
title_full_unstemmed |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
title_sort |
Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method |
dc.creator.fl_str_mv |
Rosales-Muñoz, Andrés Alfonso Montano, Jhon Grisales-Noreña, Luis Fernando Montoya, Oscar Danilo Andrade, Fabio |
dc.contributor.author.none.fl_str_mv |
Rosales-Muñoz, Andrés Alfonso Montano, Jhon Grisales-Noreña, Luis Fernando Montoya, Oscar Danilo Andrade, Fabio |
dc.subject.keywords.spa.fl_str_mv |
Microgrid; DC-DC Converter; Electric Potential |
topic |
Microgrid; DC-DC Converter; Electric Potential LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
In this paper, we address the problem of the optimal power dispatch of Distributed Generators (DGs) in Alternating Current (AC) networks, better known as the Optimal Power Flow (OPF) problem. We used, as the objective function, the minimization of power losses (Formula presented.) associated with energy transport, which are subject to the set of constraints that compose AC networks in an environment of distributed generation. To validate the effectiveness of the proposed methodology in solving the OPF problem in any network topology, we employed one 10-node mesh test system and three radial text systems: 10, 33, and 69 nodes. In each test system, DGs were allowed to inject (Formula presented.), (Formula presented.), and (Formula presented.) of the power supplied by the slack generator in the base case. To solve the OPF problem, we used a master–slave methodology that integrates the optimization method Salps Swarm Algorithm (SSA) and the load flow technique based on the Successive Approximation (SA) method. Moreover, for comparison purposes, we employed some of the algorithms reported in the specialized literature to solve the OPF problem (the continuous genetic algorithm, the particle swarm optimization algorithm, the black hole algorithm, the antlion optimization algorithm, and the Multi-Verse Optimizer algorithm), which were selected because of their excellent results in solving such problems. The results obtained by the proposed solution methodology demonstrate its superiority and convergence capacity in terms of minimization of (Formula presented.) in both radial and mesh systems. It provided the best reduction in minimum (Formula presented.) in short processing times and showed excellent repeatability in each test system and scenario under analysis. © 2022 by the authors. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-24T20:48:20Z |
dc.date.available.none.fl_str_mv |
2023-07-24T20:48:20Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Rosales-Muñoz, A. A., Montano, J., Grisales-Noreña, L. F., Montoya, O. D., & Andrade, F. (2022). Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method. Sustainability, 14(20), 13408. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12415 |
dc.identifier.doi.none.fl_str_mv |
10.3390/su142013408 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Rosales-Muñoz, A. A., Montano, J., Grisales-Noreña, L. F., Montoya, O. D., & Andrade, F. (2022). Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method. Sustainability, 14(20), 13408. 10.3390/su142013408 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12415 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
32 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Sustainability (Switzerland) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/1/sustainability-14-13408.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/4/sustainability-14-13408.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/5/sustainability-14-13408.pdf.jpg |
bitstream.checksum.fl_str_mv |
b44249f5de0ba92466b167c0f858f023 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 b3e9f91ab2f56985c34fbb949de52db6 2fabfe47e150656b7a6f210605749ab9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021672177500160 |
spelling |
Rosales-Muñoz, Andrés Alfonso1cadd052-2b2e-4872-b1d3-7679f6be5f2aMontano, Jhon5edc0c05-f7f1-4a81-8b30-3981975c221dGrisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Andrade, Fabio3994c1b0-72d3-421d-97ba-4bf241fef00f2023-07-24T20:48:20Z2023-07-24T20:48:20Z20222023Rosales-Muñoz, A. A., Montano, J., Grisales-Noreña, L. F., Montoya, O. D., & Andrade, F. (2022). Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method. Sustainability, 14(20), 13408.https://hdl.handle.net/20.500.12585/1241510.3390/su142013408Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this paper, we address the problem of the optimal power dispatch of Distributed Generators (DGs) in Alternating Current (AC) networks, better known as the Optimal Power Flow (OPF) problem. We used, as the objective function, the minimization of power losses (Formula presented.) associated with energy transport, which are subject to the set of constraints that compose AC networks in an environment of distributed generation. To validate the effectiveness of the proposed methodology in solving the OPF problem in any network topology, we employed one 10-node mesh test system and three radial text systems: 10, 33, and 69 nodes. In each test system, DGs were allowed to inject (Formula presented.), (Formula presented.), and (Formula presented.) of the power supplied by the slack generator in the base case. To solve the OPF problem, we used a master–slave methodology that integrates the optimization method Salps Swarm Algorithm (SSA) and the load flow technique based on the Successive Approximation (SA) method. Moreover, for comparison purposes, we employed some of the algorithms reported in the specialized literature to solve the OPF problem (the continuous genetic algorithm, the particle swarm optimization algorithm, the black hole algorithm, the antlion optimization algorithm, and the Multi-Verse Optimizer algorithm), which were selected because of their excellent results in solving such problems. The results obtained by the proposed solution methodology demonstrate its superiority and convergence capacity in terms of minimization of (Formula presented.) in both radial and mesh systems. It provided the best reduction in minimum (Formula presented.) in short processing times and showed excellent repeatability in each test system and scenario under analysis. © 2022 by the authors.32 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sustainability (Switzerland)Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasHák, T., Janoušková, S., Moldan, B. Sustainable Development Goals: A need for relevant indicators (2016) Ecological Indicators, 60, pp. 565-573. Cited 677 times. http://www.elsevier.com/locate/ecolind doi: 10.1016/j.ecolind.2015.08.003Swain, R.B., Karimu, A. Renewable electricity and sustainable development goals in the EU (2020) World Development, 125, art. no. 104693. Cited 74 times. http://www.journals.elsevier.com/world-development/ doi: 10.1016/j.worlddev.2019.104693Büyüközkan, G., Karabulut, Y., Mukul, E. A novel renewable energy selection model for United Nations’ sustainable development goals (2018) Energy, Part A 165, pp. 290-302. Cited 102 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.08.215Revesz, R.L., Unel, B. Managing the future of the electricity grid: Energy storage and greenhouse gas emissions (2018) Harvard Environmental Law Review, 42 (1), pp. 139-196. Cited 7 times. http://harvardelr.com/wp-content/uploads/2018/03/revesz_unel.pdfEnsini, L., Sandrolini, L., Thomas, D.W.P., Sumner, M., Rose, C. Conducted Emissions on DC Power Grids (2018) IEEE International Symposium on Electromagnetic Compatibility, 2018-August, art. no. 8485174, pp. 214-219. Cited 11 times. ISBN: 978-146739697-4 doi: 10.1109/EMCEurope.2018.8485174Grisales-Noreña, L.F., Montoya, O.D., Hincapié-Isaza, R.A., Granada Echeverri, M., Perea-Moreno, A.-J. Optimal location and sizing of dgs in dc networks using a hybrid methodology based on the ppbil algorithm and the vsa (2021) Mathematics, 9 (16), art. no. 1913. Cited 9 times. https://www.mdpi.com/2227-7390/9/16/1913/pdf doi: 10.3390/math9161913Koohi-Fayegh, S., Rosen, M.A. A review of energy storage types, applications and recent developments (2020) Journal of Energy Storage, 27, art. no. 101047. Cited 759 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2019.101047Martins, A.S.C., Araujo, L.R.D., Penido, D.R.R. Sensibility Analysis with Genetic Algorithm to Allocate Distributed Generation and Capacitor Banks in Unbalanced Distribution Systems (Open Access) (2022) Electric Power Systems Research, 209, art. no. 107962. Cited 7 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.107962Erdinc, O., Tascikaraoglu, A., Paterakis, N.G., Dursun, I., Sinim, M.C., Catalao, J.P.S. Optimal sizing and siting of distributed generation and EV charging stations in distribution systems (Open Access) (2017) 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, 2018-January, pp. 1-6. Cited 7 times. ISBN: 978-153861953-7 doi: 10.1109/ISGTEurope.2017.8260298Erdinc, O., Tascikaraoglu, A., Paterakis, N.G., Dursun, I., Sinim, M.C., Catalao, J.P.S. Comprehensive Optimization Model for Sizing and Siting of DG Units, EV Charging Stations, and Energy Storage Systems (2018) IEEE Transactions on Smart Grid, 9 (4), pp. 3871-3882. Cited 91 times. doi: 10.1109/TSG.2017.2777738Muñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks (Open Access) (2022) Electronics (Switzerland), 11 (8), art. no. 1287. Cited 3 times. https://www.mdpi.com/2079-9292/11/8/1287/pdf doi: 10.3390/electronics11081287Rosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Grisales-Noreña, L.F., Garzon-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., Rodriguez Cabal, M.A. Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks (2020) Transactions on Energy Systems and Engineering Applications, 1 (1), pp. 13-31. Cited 14 times. revistas.utb.edu.co/tesea/ doi: 10.32397/tesea.vol1.n1.2Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 80 times. doi: 10.1016/j.epsr.2018.07.003Orosz, T., Rassõlkin, A., Kallaste, A., Arsénio, P., Pánek, D., Kaska, J., Karban, P. Robust design optimization and emerging technologies for electrical machines: Challenges and open problems (2020) Applied Sciences (Switzerland), 10 (19), art. no. 6653. Cited 72 times. https://res.mdpi.com/d_attachment/applsci/applsci-10-06653/article_deploy/applsci-10-06653.pdf doi: 10.3390/APP10196653Montano, J., Mejia, A.F.T., Muñoz, A.A.R., Andrade, F., Garzon Rivera, O.D., Palomeque, J.M. Salp swarm optimization algorithm for estimating the parameters of photovoltaic panels based on the three-diode model (Open Access) (2021) Electronics (Switzerland), 10 (24), art. no. 3123. Cited 7 times. https://www.mdpi.com/2079-9292/10/24/3123/pdf doi: 10.3390/electronics10243123Muñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Giral-Ramírez, D.A. Optimal power dispatch of distributed generators in direct current networks using a master–slave methodology that combines the salp swarm algorithm and the successive approximation method (2021) Electronics (Switzerland), 10 (22), art. no. 2837. Cited 6 times. https://www.mdpi.com/2079-9292/10/22/2837/pdf doi: 10.3390/electronics10222837Grisales-Noreña, L.F., Ramos-Paja, C.A., Gonzalez-Montoya, D., Alcalá, G., Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia (2020) Sustainability (Switzerland), 12 (3), art. no. 1219. Cited 17 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-01219/article_deploy/sustainability-12-01219-v2.pdf doi: 10.3390/su12031219Lashkar Ara, A., Kazemi, A., Gahramani, S., Behshad, M. Optimal reactive power flow using multi-objective mathematical programming (Open Access) (2012) Scientia Iranica, 19 (6), pp. 1829-1836. Cited 48 times. scientiairanica.sharif.edu doi: 10.1016/j.scient.2012.07.010Bernal-Romero, D.L., Montoya, O.D., Arias-Londoño, A. Solution of the optimal reactive power flow problem using a discrete-continuous cbga implemented in the digsilent programming language (Open Access) (2021) Computers, 10 (11), art. no. 151. Cited 8 times. https://www.mdpi.com/2073-431X/10/11/151/pdf doi: 10.3390/computers10110151Gutiérrez, D., Villa, W.M., López-Lezama, J.M. Optimal reactive power dispatch by means of particle swarm optimization (Open Access) (2017) Informacion Tecnologica, 28 (5), pp. 215-224. Cited 8 times. http://www.scielo.cl/pdf/infotec/v28n5/art20.pdf doi: 10.4067/S0718-07642017000500020Wang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119Abualigah, L., Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments (2021) Cluster Computing, 24 (1), pp. 205-223. Cited 149 times. https://link.springer.com/journal/volumesAndIssues/10586 doi: 10.1007/s10586-020-03075-5Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems (2017) Advances in Engineering Software, 114, pp. 163-191. Cited 2966 times. http://www.journals.elsevier.com/advances-in-engineering-software/ doi: 10.1016/j.advengsoft.2017.07.002El-Fergany, A.A., Hasanien, H.M. Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis (Open Access) (2020) Neural Computing and Applications, 32 (9), pp. 5267-5283. Cited 64 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-019-04029-8Jumani, T.A., Mustafa, M.W., Rasid, M.M., Anjum, W., Ayub, S. Salp swarm optimization algorithm-based controller for dynamic response and power quality enhancement of an islanded microgrid (2019) Processes, 7 (11), art. no. 840. Cited 32 times. https://res.mdpi.com/d_attachment/processes/processes-07-00840/article_deploy/processes-07-00840-v3.pdf doi: 10.3390/pr7110840Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Montoya, O.D., Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems (2020) Electric Power Systems Research, 187, art. no. 106454. Cited 39 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106454Kaur, S., Kumbhar, G., Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) International Journal of Electrical Power and Energy Systems, 63, pp. 609-617. Cited 194 times. doi: 10.1016/j.ijepes.2014.06.023Tamilselvan, V., Jayabarathi, T., Raghunathan, T., Yang, X.-S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm (2018) Alexandria Engineering Journal, 57 (4), pp. 2775-2786. Cited 90 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2018.01.004Devi, S., Geethanjali, M. Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 62, pp. 646-653. Cited 40 times. doi: 10.1016/j.ijepes.2014.05.021Peñaloza, J., Yumbla, J., López, J., Padilha-Feltrin, A. Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm (Open Access) (2019) 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019, art. no. 8895354. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8890738 ISBN: 978-153869567-8 doi: 10.1109/ISGT-LA.2019.8895354Abualigah, L., Shehab, M., Alshinwan, M., Alabool, H. Salp swarm algorithm: a comprehensive survey (2020) Neural Computing and Applications, 32 (15), pp. 11195-11215. Cited 145 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-019-04629-4Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering (Open Access) (2013) Information Sciences, 222, pp. 175-184. Cited 902 times. doi: 10.1016/j.ins.2012.08.023Mirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization (Open Access) (2016) Neural Computing and Applications, 27 (2), pp. 495-513. Cited 1649 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-015-1870-7Ocampo-Toro, J.A., Garzon-Rivera, O.D., Grisales-Noreña, L.F., Montoya-Giraldo, O.D., Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO 2 Emissions Using the Antlion Optimization Algorithm (Open Access) (2021) Arabian Journal for Science and Engineering, 46 (10), pp. 9995-10006. Cited 4 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-021-05831-0http://purl.org/coar/resource_type/c_6501ORIGINALsustainability-14-13408.pdfsustainability-14-13408.pdfapplication/pdf1191225https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/1/sustainability-14-13408.pdfb44249f5de0ba92466b167c0f858f023MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsustainability-14-13408.pdf.txtsustainability-14-13408.pdf.txtExtracted texttext/plain87482https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/4/sustainability-14-13408.pdf.txtb3e9f91ab2f56985c34fbb949de52db6MD54THUMBNAILsustainability-14-13408.pdf.jpgsustainability-14-13408.pdf.jpgGenerated Thumbnailimage/jpeg8129https://repositorio.utb.edu.co/bitstream/20.500.12585/12415/5/sustainability-14-13408.pdf.jpg2fabfe47e150656b7a6f210605749ab9MD5520.500.12585/12415oai:repositorio.utb.edu.co:20.500.12585/124152023-07-27 00:17:41.46Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |