Stabilization of MT-HVDC grids via passivity-based control and convex optimization

This paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hierarchical control is developed, which guarantees a stable operation under load va...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
Serra, Federico
Hernandez, Jesus C.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10404
Acceso en línea:
https://hdl.handle.net/20.500.12585/10404
https://doi.org/10.1016/j.epsr.2021.107273.
Palabra clave:
Convex optimization
Direct-current networks
Passivity-based control
Hierarchical control
Port-Hamiltonian formulation
Stabilization of electrical networks
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_57ff18e92c28a51c63366a12c99bd21c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10404
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Stabilization of MT-HVDC grids via passivity-based control and convex optimization
title Stabilization of MT-HVDC grids via passivity-based control and convex optimization
spellingShingle Stabilization of MT-HVDC grids via passivity-based control and convex optimization
Convex optimization
Direct-current networks
Passivity-based control
Hierarchical control
Port-Hamiltonian formulation
Stabilization of electrical networks
LEMB
title_short Stabilization of MT-HVDC grids via passivity-based control and convex optimization
title_full Stabilization of MT-HVDC grids via passivity-based control and convex optimization
title_fullStr Stabilization of MT-HVDC grids via passivity-based control and convex optimization
title_full_unstemmed Stabilization of MT-HVDC grids via passivity-based control and convex optimization
title_sort Stabilization of MT-HVDC grids via passivity-based control and convex optimization
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
Serra, Federico
Hernandez, Jesus C.
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Garcés, Alejandro
Serra, Federico
Hernandez, Jesus C.
dc.subject.keywords.spa.fl_str_mv Convex optimization
Direct-current networks
Passivity-based control
Hierarchical control
Port-Hamiltonian formulation
Stabilization of electrical networks
topic Convex optimization
Direct-current networks
Passivity-based control
Hierarchical control
Port-Hamiltonian formulation
Stabilization of electrical networks
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hierarchical control is developed, which guarantees a stable operation under load variations. This structure includes a port-Hamiltonian formulation representing the network dynamics and a passivity-based control (PBC) for the primary control. This control guarantees stability according to Lyapunov’s theory. Next, a convex optimal power flow formulation based on semidefinite programming (SDP) defines the control’s set point in the secondary/ tertiary control. The proposed stabilization scheme is general for both point-to-point HVDC systems and MTHVDC grids. Simulation results in MATLAB/Simulink demonstrate the stability of the primary control and the optimal performance of the secondary/tertiary control, considering three simulation scenarios on a reduced version of the CIGRE MT-HVDC test system: (i) variation of generation and load, (ii) short-circuit events with different fault resistances and (iii) grid topology variation. These simulations prove the applicability and efficiency of the proposed approach.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-30
dc.date.accessioned.none.fl_str_mv 2022-01-25T12:53:02Z
dc.date.available.none.fl_str_mv 2022-01-25T12:53:02Z
dc.date.submitted.none.fl_str_mv 2022-01-24
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Oscar Danilo Montoya, Walter Gil-González, Alejandro Garces, Federico Serra, Jesus C. Hernández, Stabilization of MT-HVDC grids via passivity-based control and convex optimization, Electric Power Systems Research, Volume 196, 2021, 107273, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107273.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10404
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.epsr.2021.107273.
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Oscar Danilo Montoya, Walter Gil-González, Alejandro Garces, Federico Serra, Jesus C. Hernández, Stabilization of MT-HVDC grids via passivity-based control and convex optimization, Electric Power Systems Research, Volume 196, 2021, 107273, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107273.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10404
https://doi.org/10.1016/j.epsr.2021.107273.
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electric Power Systems Research - vol. 196 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/1/1-s2.0-S0378779621002546-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/4/1-s2.0-S0378779621002546-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/5/1-s2.0-S0378779621002546-main.pdf.jpg
bitstream.checksum.fl_str_mv 6635a14438c7451abc2dcab6f3502347
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
acf3692d0489c3e8e6267caa008a1031
6be1635b65f5c2f2467006901727b401
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021780841431040
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterfae25221-fcde-4c7d-bf52-14a677a53c76Garcés, Alejandro89a21224-264b-4ff5-bc9e-172f5b9be0fbSerra, Federicoa782614d-85bf-48c1-9292-571df3989593Hernandez, Jesus C.c30f1cc6-96fe-4830-b7cf-1a91478395d12022-01-25T12:53:02Z2022-01-25T12:53:02Z2021-04-302022-01-24Oscar Danilo Montoya, Walter Gil-González, Alejandro Garces, Federico Serra, Jesus C. Hernández, Stabilization of MT-HVDC grids via passivity-based control and convex optimization, Electric Power Systems Research, Volume 196, 2021, 107273, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107273.https://hdl.handle.net/20.500.12585/10404https://doi.org/10.1016/j.epsr.2021.107273.Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hierarchical control is developed, which guarantees a stable operation under load variations. This structure includes a port-Hamiltonian formulation representing the network dynamics and a passivity-based control (PBC) for the primary control. This control guarantees stability according to Lyapunov’s theory. Next, a convex optimal power flow formulation based on semidefinite programming (SDP) defines the control’s set point in the secondary/ tertiary control. The proposed stabilization scheme is general for both point-to-point HVDC systems and MTHVDC grids. Simulation results in MATLAB/Simulink demonstrate the stability of the primary control and the optimal performance of the secondary/tertiary control, considering three simulation scenarios on a reduced version of the CIGRE MT-HVDC test system: (i) variation of generation and load, (ii) short-circuit events with different fault resistances and (iii) grid topology variation. These simulations prove the applicability and efficiency of the proposed approach.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electric Power Systems Research - vol. 196 (2021)Stabilization of MT-HVDC grids via passivity-based control and convex optimizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Convex optimizationDirect-current networksPassivity-based controlHierarchical controlPort-Hamiltonian formulationStabilization of electrical networksLEMBCartagena de IndiasO.D. Montoya, W. Gil-González, L. Grisales-Noreña, C. Orozco-Henao, F. Serra Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models Energies, 12 (23) (2019), p. 4494J. Li, F. Liu, Z. Wang, S. Low, S. Mei Optimal power flow in stand-alone DC microgrids IEEE Trans. Power Syst. (2018), p. 1, 10.1109/TPWRS.2018.2801280A. Garces On convergence of newtons method in power flow study for DC microgrids IEEE Trans. Power Syst. (2018), p. 1, 10.1109/TPWRS.2018.2820430P. Magne, B. Nahid-Mobarakeh, S. Pierfederici General active global stabilization of multiloads DC-Power networks IEEE Trans. Power Electron., 27 (4) (2012), pp. 1788-1798, 10.1109/TPEL.2011.2168426A. Elnady, A. Adam Decoupled state-Feedback based control scheme for the distributed generation system Electric Power Components and Systems, 46 (5) (2018), pp. 494-510, 10.1080/15325008.2018.1453564O.D. Montoya, W. Gil-González, A. Garces Optimal power flow on DC microgrids: A Quadratic convex approximation IEEE Trans. Circuits Syst. II Exp. Briefs (2018), p. 1, 10.1109/TCSII.2018.2871432O.D. Montoya, W. Gil-González, L.F. Grisales-Noreña Optimal power dispatch of DGs in DC power grids: a hybrid gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem WSEAS Transactions on Power Systems, 13 (33) (2018), pp. 335-346E. Benedito, D. del Puerto-Flores, A. Dória-Cerezo, J.M. Scherpen Port-Hamiltonian based optimal power flow algorithm for multi-terminal DC networks Control Eng. Pract., 83 (2019), pp. 141-150, 10.1016/j.conengprac.2018.10.018D. Murillo-Yarce, A. Garcés-Ruiz, A. Escobar-Mejía Passivity-Based control for DC-Microgrids with constant power terminals in island mode operation Revista Facultad de Ingeniería (86) (2018), pp. 32-39E. Benedito, D. del Puerto-Flores, A. Dória-Cerezo, J.M. Scherpen Optimal power flow for resistive DC networks: a port-Hamiltonian approach IFAC-PapersOnLine, 50 (1) (2017), pp. 25-30, 10.1016/j.ifacol.2017.08.005C. De Persis, E.R. Weitenberg, F. Dörfler A power consensus algorithm for DC microgrids Automatica, 89 (2018), pp. 364-375, 10.1016/j.automatica.2017.12.026M. Tucci, L. Meng, J.M. Guerrero, G. Ferrari-Trecate Stable current sharing and voltage balancing in DC microgrids: a consensus-based secondary control layer Automatica, 95 (2018), pp. 1-13, 10.1016/j.automatica.2018.04.017M. Tucci, L. Meng, J.M. Guerrero, G. Ferrari-Trecate Plug-and-play control and consensus algorithms for current sharing in DC microgrids IFAC-PapersOnLine, 50 (1) (2017), pp. 12440-12445, 10.1016/j.ifacol.2017.08.1918Z. Shuai, J. Fang, F. Ning, Z.J. Shen Hierarchical structure and bus voltage control of DC microgrid Renew. Sustain. Energy Rev., 82 (2018), pp. 3670-3682, 10.1016/j.rser.2017.10.096J. Lai, X. Lu, W. Yao, J. Wen, S. Cheng Robust distributed cooperative control for DC mircogrids with time delays, noise disturbances, and switching topologies J. Franklin Inst., 354 (18) (2017), pp. 8312-8332, 10.1016/j.jfranklin.2017.10.025C. Dong, F. Guo, H. Jia, Y. Xu, X. Li, P. Wang DC Microgrid stability analysis considering time delay in the distributed control Energy Procedia, 142 (2017), pp. 2126-2131, 10.1016/j.egypro.2017.12.616N. Vafamand, M.H. Khooban, T. Dragičević, F. Blaabjerg Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids IEEE Trans. Ind. Electron., 66 (2) (2019), pp. 1356-1362, 10.1109/TIE.2018.2826485M.A. Kardan, M.H. Asemani, A. Khayatian, N. Vafamand, M.H. Khooban, T. Dragičević, F. Blaabjerg Improved stabilization of nonlinear DC microgrids: cubature kalman filter approach IEEE Trans. Ind. Appl., 54 (5) (2018), pp. 5104-5112, 10.1109/TIA.2018.2848959L.F. Grisales-Noreña, O.D. Garzón-Rivera, J.A. Ocampo-Toro, C.A. Ramos-Paja, M.A. Rodriguez-Cabal Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks Transactions on Energy Systems and Engineering Applications, 1 (1) (2020), pp. 13-31, 10.32397/tesea.vol1.n1.2O.D. Montoya Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II Exp. Briefs, 66 (4) (2018), pp. 642-646, 10.1109/TCSII.2018.2866447W. Gil-González, O.D. Montoya, E. Holguín, A. Garces, L.F. Grisales-Noreña Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21 (2019), pp. 1-8, 10.1016/j.est.2018.10.025A. Garces, O.D. Montoya, R. Torres Optimal power flow in multiterminal HVDC systems considering DC/DC converters 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (2016), pp. 1212-1217, 10.1109/ISIE.2016.7745067O.D. Montoya, L. Grisales-Noreña, D. González-Montoya, C. Ramos-Paja, A. Garces Linear power flow formulation for low-voltage DC power grids Electr. Power Syst. Res., 163 (2018), pp. 375-381, 10.1016/j.epsr.2018.07.003J.W. Simpson-Porco, F. Dorfler, F. Bullo On resistive networks of constant-Power devices IEEE Trans. Circuits Syst. II Exp. Briefs, 62 (8) (2015), pp. 811-815, 10.1109/TCSII.2015.2433537C. Gavriluta, I. Candela, C. Citro, A. Luna, P. Rodriguez Design considerations for primary control in multi-terminal VSC-HVDC grids Electr. Power Syst. Res., 122 (2015), pp. 33-41, 10.1016/j.epsr.2014.12.020A. Garces Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res., 151 (Supplement C) (2017), pp. 149-153, 10.1016/j.epsr.2017.05.031R. Cisneros, F. Mancilla-David, R. Ortega Passivity-Based control of a grid-Connected small-Scale windmill with limited control authority IEEE J. Emerg. Sel. Top. Power Electron., 1 (4) (2013), pp. 247-259, 10.1109/JESTPE.2013.2285376S.P. Nageshrao, G.A.D. Lopes, D. Jeltsema, R. Babuska Port-Hamiltonian systems in adaptive and learning control: A Survey IEEE Trans. Autom. Control, 61 (5) (2016), pp. 1223-1238, 10.1109/TAC.2015.2458491W. Gil-González, A. Garces, A. Escobar Passivity-based control and stability analysis for hydro-turbine governing systems Appl. Math. Modell., 68 (2019), pp. 471-486, 10.1016/j.apm.2018.11.045O.D. Montoya, W. Gil-González, F.M. Serra PBC Approach for SMES devices in electric distribution networks IEEE Trans. Circuits Syst. II Exp. Briefs (2018), pp. 1-6, 10.1109/TCSII.2018.2805774F.M. Serra, C.H.D. Angelo IDA-PBC Controller design for grid connected front end converters under non-ideal grid conditions Electr. Power Syst. Res., 142 (2017), pp. 12-19, 10.1016/j.epsr.2016.08.041A.M. Jubril, A.O. Adediji, O.A. Olaniyan Solving the combined heat and power dispatch problem: A Semi-definite programming approach Electric Power Components and Systems, 40 (12) (2012), pp. 1362-1376, 10.1080/15325008.2012.694972A.M. Jubril, A.O. Adediji Semi-definite programming approach to stochastic combined heat and power environmental/economic dispatch problem Electric Power Components and Systems, 43 (18) (2015), pp. 2039-2049, 10.1080/15325008.2015.1075082W. Gil-González, O.D. Montoya, E. Holguín, A. Garces, L.F. Grisales-Noreña Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model Journal of Energy Storage, 21 (2019), pp. 1-8http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S0378779621002546-main.pdf1-s2.0-S0378779621002546-main.pdfapplication/pdf841504https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/1/1-s2.0-S0378779621002546-main.pdf6635a14438c7451abc2dcab6f3502347MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S0378779621002546-main.pdf.txt1-s2.0-S0378779621002546-main.pdf.txtExtracted texttext/plain49031https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/4/1-s2.0-S0378779621002546-main.pdf.txtacf3692d0489c3e8e6267caa008a1031MD54THUMBNAIL1-s2.0-S0378779621002546-main.pdf.jpg1-s2.0-S0378779621002546-main.pdf.jpgGenerated Thumbnailimage/jpeg97375https://repositorio.utb.edu.co/bitstream/20.500.12585/10404/5/1-s2.0-S0378779621002546-main.pdf.jpg6be1635b65f5c2f2467006901727b401MD5520.500.12585/10404oai:repositorio.utb.edu.co:20.500.12585/104042023-05-26 10:20:32.226Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=